
ZMailer

The Manual; v1.99.26.200602020935

E RLZ A IM

Z

Matti Aarnio

ZMailer: The Manual; v1.99.26.200602020935

Document SGML source rendered to PDF on: Thu Feb 2 09:35:27 UTC 2006

Warning
THIS IS A WORK IN PROGRESS, AND ALL OF THE ORIGINAL LATEX MATERIAL HAS NOT BEEN

YET CONVERTED TO DOCBOOK SGML!

Once full conversion has been achieved, a lot of information updates are also needed.

Warning
In the meantime, if some module or subsystem does have incomplete documentation, see if

man-pages are more complete!

by Matti Aarnio

Published 2006

Copyright © 1988, 1992 Rayan Zachariassen, All rights reserved.

Copyright © 1994, 1995, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Matti Aarnio, All rights reserved.

Table of Contents
I. Tutorial ..xiii

1. Introduction to Email .. 1

1.1. Messaging... 1

1.1.1. The Messaging Model.. 1

1.1.2. Routing And Delivering Messages .. 4

2. ZMailer's Features, and Facilities ... 7

2.1. Introduction .. 7

2.1.1. Design Summary.. 7

2.2. Running ZMailer .. 10

2.3. Factors Affecting Overall System Performance ... 11

II. Build and Install... 13

3. Build and Install .. 15

3.1. Environment Issues... 15

3.2. Auto-con�guration ... 15

3.3. Compilation .. 18

3.4. Installing and Upgrading .. 18

3.4.1. Install Preparation .. 18

3.4.2. Installation.. 18

3.4.3. Installing the Manual Pages. .. 19

4. System Con�guring... 21

4.1. Run-time �les ... 21

4.1.1. zmailer.conf.. 21

4.1.2. /etc/group .. 21

4.1.3. /etc/services ... 21

4.2. The Router subsystem ... 22

4.2.1. The Router Con�guration File ($MAILSHARE/router.cf). 22

4.2.2. $MAILVAR/mail.conf .. 22

4.2.3. Verifying That the Router Starts ... 23

4.2.4. The Router Database Files.. 23

4.2.4.1. $MAILBIN/zmailer script .. 23

4.2.4.2. $MAILVAR/db/dbases.conf �le... 23

4.2.4.3. $MAILVAR/db/aliases �le ... 24

4.2.4.3.1. Alias expansion... 25

4.2.4.4. $MAILVAR/db/fqdnaliases �le... 25

4.2.4.5. $MAILVAR/db/localnames �le... 26

4.2.4.6. $MAILVAR/db/routes �le ... 27

4.2.4.7. UUCP Node Names .. 27

4.2.5. Checking the Routing .. 27

4.3. The Smtpserver subsystem.. 27

4.3.1. The �smtpserver.conf�, and smtp-policy databases 28

4.3.2. Testing smtpserver operationality .. 28

4.4. The Scheduler subsystem .. 29

4.4.1. Checking the Scheduler .. 29

4.4.2. Checking scheduler.auth �le... 30

4.4.3. Checking sm.conf �le .. 30

4.4.4. Customizing ZMailer Messages .. 30

4.5. Boot-up Scripts ... 31

4.6. Checking the Log Files... 31

4.7. Crontab ... 31

iii

4.8. Trim-down of Logging ... 32

5. Installation to Clients .. 33

5.1. Required Files... 33

5.2. Mounting $MAILBOXes and/or $POSTOFFICE/ Hierarchies via NFS......................... 33

6. ./configure options .. 35

6.1. Used environment variables ... 35

6.2. Options for various facilities .. 35

6.3. Runtime ZENV Variables ... 40

7. Verifying the System... 45

8. Installing Whoson Service .. 47

III. Administation ... 49

9. DNS and ZMailer.. 51

10. Security Issues... 53

11. The Queue ... 55

11.1. Message Submission Areas .. 57

11.2. Router Behaviour on Queues... 57

11.3. Scheduler, and Transport Agents .. 58

11.4. Postmaster Analysis Area... 59

12. Smtpserver Administration.. 61

12.1. smtpserver.conf.. 63

12.1.1. smtpserver.conf; PARAM keywords... 64

12.1.2. smtpserver.conf; �EHLO-style options� ... 66

12.2. Policy Based Relaying Control .. 66

12.3. Content Based Filtering.. 70

13. Router Administration ... 71

13.1. Con�guration File Programming Language... 72

13.2. Databases.. 77

13.2.1. Using a Pathalias Database With �%0� substitution.................................. 81

13.2.2. Mailing Lists and ~/.forward... 82

13.2.2.1. aliases.cf Logic ... 83

13.2.2.2. aliases .. 83

13.2.2.3. Security Considerations... 85

14. Scheduler Administration .. 87

14.1. Principiles of scheduling: Threads ... 88

14.2. Scheduler Resource Control .. 89

14.3. The scheduler.conf �le... 90

14.4. Scheduler'sMailq ... 93

14.5. Scheduler's scheduler.auth control �le... 93

14.6. manual-expirer.. 93

14.7. Scheduler's Diagnostics Reporting ... 94

14.7.1. Scheduler's Diagnostics Reporting, Forms Files 94

15. Transport Agent Administration ... 95

15.1. Sm Transport Agent ... 95

16. Logging and Statistics for Administrator.. 99

IV. Reference... 101

17. Smtpserver Reference.. 103

17.1. Smtpserver Runtime Parameters ... 103

17.2. Smtpserver Con�guration ... 107

17.2.1. Smtpserver con�guration; PARAM -entries... 107

17.3. policy-builder.sh utility .. 110

17.4. Relaying Control Policy Language .. 112

iv

17.4.1. Semantics ... 116

17.5. Content Based Filtering.. 117

18. Sendmail Reference ... 119

19. Rmail Reference ... 123

20. zmailer(3) Reference... 125

21. Router Reference ... 129

21.1. ZMSH Script Language.. 130

21.1.1. ZMSH Usage: .. 131

21.1.2. ZMSH Parameters:... 131

21.1.3. ZMSH Debug options: ... 132

21.2. Con�guration Script Writing Rules.. 132

21.3. Script Security Issues ... 132

21.4. Router Script Well Known Entrypoints.. 133

21.4.1. The process() function... 133

21.4.2. The router() function... 133

21.4.3. The crossbar() function .. 133

21.4.4. The server() function... 133

21.5. Script Language Internal Functions.. 133

21.5.1. ":" (doublecolon)... 133

21.5.2. ".", "include".. 134

21.5.3. "[", "test" .. 134

21.5.4. attributes .. 138

21.5.5. basename .. 138

21.5.6. break... 139

21.5.7. builtin .. 139

21.5.8. car ... 140

21.5.9. cat ... 140

21.5.10. cd ... 141

21.5.11. cdr ... 141

21.5.12. channel .. 142

21.5.13. continue .. 142

21.5.14. daemon... 143

21.5.15. db ... 143

21.5.16. dblookup... 145

21.5.17. echo ... 147

21.5.18. elements .. 147

21.5.19. envars... 148

21.5.20. erraddron .. 148

21.5.21. eval ... 149

21.5.22. exit ... 150

21.5.23. export... 150

21.5.24. filepriv .. 150

21.5.25. first... 151

21.5.26. gensym... 152

21.5.27. get ... 152

21.5.28. getopts .. 153

21.5.29. grind... 153

21.5.30. groupmembers.. 154

21.5.31. hash ... 154

21.5.32. homedirectory ... 155

21.5.33. host ... 156

21.5.34. hostname .. 156

v

21.5.35. ifssplit .. 157

21.5.36. lappend .. 157

21.5.37. last ... 158

21.5.38. length... 158

21.5.39. list ... 159

21.5.40. listaddresses ... 159

21.5.41. listexpand .. 160

21.5.42. login2uid .. 161

21.5.43. lreplace .. 162

21.5.44. malcontents.. 163

21.5.45. printaliases.. 164

21.5.46. process .. 164

21.5.47. read ... 165

21.5.48. recase... 166

21.5.49. recipient .. 167

21.5.50. relation .. 168

21.5.51. rest ... 173

21.5.52. return... 174

21.5.53. returns .. 175

21.5.54. rfc822... 175

21.5.55. rfc822date .. 175

21.5.56. rfc822syntax.. 176

21.5.57. runas... 177

21.5.58. sender... 177

21.5.59. set ... 178

21.5.60. shift... 179

21.5.61. sleep... 180

21.5.62. squirrel .. 180

21.5.63. stability .. 181

21.5.64. "test", "[" .. 182

21.5.65. times... 182

21.5.66. trace... 183

21.5.67. trap ... 184

21.5.68. type ... 185

21.5.69. uid2login .. 186

21.5.70. umask... 186

21.5.71. unset... 187

21.5.72. untrace .. 188

21.5.73. user ... 188

21.5.74. wait ... 189

22. Scheduler Reference .. 191

22.1. Con�guration Language ... 193

22.1.1. PARAM-entries.. 193

22.1.2. Group-Clause selection.. 194

22.1.3. Clause components .. 195

22.1.4. Variables and keywords ... 195

22.2. Resource Management ... 199

22.3. scheduler.auth �le.. 199

22.4. mailq protocol v.1 .. 200

22.5. mailq protocol v.2 .. 201

22.6. Transport Agent Interface Protocol .. 201

22.7. Canned (Error) Message Files .. 202

vi

22.8. Security Issues .. 202

23. Transport Agents References .. 205

23.1. mailbox .. 205

23.2. hold... 209

23.3. smtp.. 210

23.4. sm - zmailer Sendmail compatible transport agent .. 213

23.4.1. con�guration of sm .. 214

23.5. expirer.. 216

23.6. libta - Transport Agent Support Library... 217

23.6.1. Function groupings .. 217

23.6.2. Function listings... 217

23.6.3. Function usage examples ... 217

23.7. Security Issues .. 217

24. ZMailer Utilities Reference .. 219

24.1. zmailer command script... 219

24.1.1. zmailer bootclean ... 219

24.1.2. zmailer start.. 219

24.1.3. zmailer stop, zmailer kill ... 219

24.1.4. zmailer nuke ... 219

24.1.5. zmailer router ... 219

24.1.6. zmailer scheduler ... 219

24.1.7. zmailer smtp(server) .. 220

24.1.8. zmailer newdb .. 220

24.1.9. zmailer newal(iases) ... 220

24.1.10. zmailer newf(qdnaliases) ... 220

24.1.11. zmailer new-route(s) .. 220

24.1.12. zmailer new-local(names) .. 220

24.1.13. zmailer logsync ... 220

24.1.14. zmailer logrotate .. 220

24.1.15. zmailer resubmit .. 221

24.1.16. zmailer cleanup .. 221

24.1.17. zmailer freeze ... 221

24.1.18. zmailer thaw, zmailer unfr(eeze) .. 221

24.2. The newdbprocessor script ... 221

24.3. The newdb script.. 221

24.4. The makedb utility... 222

24.5. The dblook utility... 223

24.6. The policy-builder.sh script... 223

24.7. autoanswer .. 227

24.8. vacation.. 229

V. Appendices.. 231

A. Sample Router Con�guration Scripts... 233

A.1. SMTP+UUCP.cf ... 233

A.2. Crossbar.cf ... 235

A.3. Process.cf.. 239

A.4. Rrouter.cf.. 241

B. Scheduler's Con�guration File Samples .. 249

B.1. scheduler.conf ... 249

B.2. scheduler.auth ... 257

C. Using ZMailer with Mailinglist Managers ... 259

D. Adding new transport agents.. 261

vii

E. Internal File Data Formats .. 263

E.1. ZMailer's Files and Formats .. 263

E.2. Envelope Header Lines .. 263

E.3. Message Control File ... 267

E.3.1. Format.. 267

E.4. Database File Formats.. 273

E.4.1. The dbases.conf �le .. 273

E.4.2. Aliases File .. 274

E.4.3. FQDNAliases File ... 275

E.4.4. Routes File... 276

E.4.5. Localnames.. 277

E.4.6. Otherservers... 277

E.4.7. Iproutes .. 277

E.4.8. Fullnames .. 277

E.4.9. Userdb.. 277

E.4.10. Expiredaccts .. 278

E.4.11. Active (newsgroups).. 278

E.4.12. Aliases.ldap ... 278

E.4.13. Fqdnaliases.ldap .. 278

E.4.14. Mailbox File .. 278

E.5. Scheduler Statistics Log.. 278

E.6. Syslogged Log Formats ... 279

E.6.1. Smtpserver's Syslog Format .. 279

E.6.2. Router's Syslog Format .. 280

E.6.3. Transport Agent's Syslog Format.. 281

F. S/SL Language.. 283

F.1. S/SL Introduction ... 283

F.2. S/SL: Identi�ers, Strings and Integers .. 283

F.3. S/SL: Comments... 283

F.4. S/SL: Character Set .. 283

F.5. S/SL: Source Program Format.. 284

F.5.1. S/SL: Notation ... 284

F.5.2. S/SL: Programs .. 284

F.5.3. S/SL: Input and Output De�nitions ... 284

F.5.4. S/SL: Error Signals .. 285

F.5.5. S/SL: Type and Mechanism De�nitions .. 285

F.5.6. S/SL: Types. ... 286

F.5.7. S/SL: Mechanisms. .. 286

F.5.8. S/SL: Rules .. 287

F.5.9. S/SL: Actions ... 287

F.6. The Syntax of S/SL... 289

G. RFC821 .. 293

G.1. RFC821: "MAIL FROM:"... 293

G.2. RFC821: "RCPT TO:"... 293

G.3. RFC821: "DATA" .. 293

H. RFC822 .. 295

H.1. RFC822: "From:" .. 295

H.2. RFC822: "To:" ... 295

H.3. RFC822: "Cc:"... 295

H.4. RFC822: "Subject:" ... 295

H.5. RFC822: "Date:".. 295

H.6. RFC822: "Sender:" .. 295

viii

Index... 297

ix

x

List of Figures
1-1. A graphical example of the messaging model... 2

1-2. How a message looks normally. .. 3

1-3. A possible, more complex message structure. .. 3

1-4. How a message should be handled.. 3

2-1. ZMailer's processes. .. 8

2-2. Directories that ZMailer uses for message processing. ... 10

4-1. Sample of �$MAILVAR/db/dbases.conf� �le.. 24

4-2. Sample of �fqdnaliases� �le .. 25

4-3. Second sample of �fqdnaliases� �le .. 25

4-4. Sample of �localnames� �le .. 26

4-5. Sample of �routes� �le ... 27

4-6. Sample of �scheduler.conf� passage for �local/*� selector.. 29

4-7. ZMailer related crontab entries for root user... 31

14. ZMailer's processes. ... 49

11-1. Directories that ZMailer uses for message processing. ... 55

12-1. ZMailer's processes; Smtpserver... 61

12-2. Sample smtpserver.conf �le ... 63

12-3. The smtp-policy.src �le default settings fragment... 68

13-1. ZMailer's processes; Router.. 71

13-2. Example of running tests on router .. 76

13-3. �Usage:� of relation function ... 78

13-4. Some examples of relation de�nitions ... 80

13-5. More examples of alternate forms of database reference.. 80

13-6. More miscellaneous relation de�nitions to illustriate various possibilities 80

13-7. An example of lookup driver for genuine pathalias generated database.................................. 82

13-8. General format of Alias �le entries: .. 84

14-1. ZMailer's processes; Scheduler... 87

14-2. Scheduler's Threads/Thread Groups ... 88

14-3. Example of scheduler.conf clause .. 90

14-4. Example of full scheduler.conf �le... 93

15-1. ZMailer's processes; Transport Agents ... 95

15-2. Sample sm.conf �le... 96

17-1. Sample �EHLO� greeting with smtpserver ... 103

17-2. Full-featured smtpserver.conf �le example .. 109

21-1. relation's option interdependencies .. 169

22-1. Sample of �scheduler.auth� �le.. 199

23-1. Sample sm.conf �le... 214

E-1. ZMailer's $POSTOFFICE/ directories and �les.. 263

xi

xii

I. Tutorial

Chapter 1. Introduction to Email

1.1. Messaging

This chapter is quite different from the rest of this document. Here we build a foundation for

understanding messaging, instead of focusing on how ZMailer behaves.

This chapter may feel a bit theoretical and abstract, being detached from practical life.

In reality, however, experience shows that most problems with messaging are a result of not

understanding the underlying messaging model, or of not respecting said model.

The terminology used here may seem a bit X.400 oriented. It is, because folks from what was then

known as CCITT (now known as ITU-T) adapted the model originally developed by IFIP. Of course,

CCITT added a lot of things of its own invention (like ADMDs and PRMDs), that we don't need to

bother ourselves with.

Although the terminology comes from X.400, it is in no way restricted to it. Our presentation here is

a generic messaging presentation not restricted to any type of protocol.

Messaging, as the name says, is all about exchanging messages, short (or sometimes long) pieces of

information. Messaging is always directional (which means that there is always a sender and one or

more recipients), targeted (the list of recipients is �xed) and store-and-forward based.

There are a few messaging-like applications in which the message is broadcast to a wide, unspeci�ed

audience. A prime example of this latter application is Usenet News. News is not messaging, as it is

not targeted.

So what about mailing lists that are linked to News, are they messaging or not? As long as the

message is transported as a mail message, it is messaging. One of the recipients of the message may

well be a Usenet News newsgroup. Similarly, a sender of a message might be the News system, or

the author who initiated the submission by using News. Messaging is not necessarily interpersonal.

It is also quite normal for different applications to communicate by using messaging methods. A

prime example of this would be EDI traf�c. It is clearly messaging, but not interpersonal.

1.1.1. The Messaging Model

In addition to users, the basic building blocks of messaging are User Agents (UAs) and Message

Submission Agent (MSA) is newer term for speci�c sub-task of Internet email, namely authenticated

message submission to �rst MTA of MTS system. Message Transfer Agents (MTAs). User agents are

the interface through which a human user interacts with the messaging system. On non-interpersonal

messaging user agents may be built directly into applications. MTAs are used to transport messages

from one computer system to another. An example of a good MTA is ZMailer. Access Units (AUs)

can be used for accessing telematic services, for example telefax. (Or in general act on user behalf

somehow, e.g. automated scripts.) Message Stores (MSs) can be used between MTAs and UAs. They

are used for storing messages before and while UAs are used to access and manipulate them.

Message Delivery Agent (MDA) is newer term intended to cover speci�c sub-task of moving the

message from MTA system to the care of MS, UA or AU. Some new MTA suites even do parts of the

UA functionality (�.forward� -processing) in the MDA. Gateways (GWs) are used in between two

different types of messaging systems, for example between SMTP and X.400 mail. Gateways are

conceptually made of two MTAs and a UA that interconnects them.

1

Chapter 1. Introduction to Email

There are two more acronyms worth looking at in the messaging model, namelyMTS (Message

Transport System) and MHS (Message Handling System). MTS is the collection of MTAs (and GWs

and MSAs and MDAs), while MHS includes MTS and UA functionality (UAs, MSs and AUs).

All in all, X.400 terms are not a complete match on how things are done in Internet email, nor should

they be considered as normative, merely giving you a reasonable frame of reference that isn't very

wrong.

A graphical example of the messaging model is shown in �gure Figure 1-1. It shows the

relationships between different elements of the model.

Figure 1-1. A graphical example of the messaging model.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

MTA

MTA

MTA

MTA

UA

UAMTA

AU

MS

UA

UA

UA

UAGW MTA

UA

MTA

MHS

Messaging Model

MTS

As can be seen, a user may use more than one UA, and a UA can be connected to more than one

MTA.

Although it is important to understand the relationships between different entities in the messaging

model, it is even more important to understand the nature of a message and the way UAs and MTAs

deal with it.

A message consists of a body and headers. In case of messages with more than one body-part (for

example some MIME messages) the different body parts are all part of the outermost body-part.

2

Chapter 1. Introduction to Email

Figure 1-2. How a message looks normally.

Headers

From: The Manager

To: One Bright Employee

CC: secretary

Subject: Salary raise

Date: 17 May 1997

Body

Dear Employee,

...

The Manager

Figure 1-3. A possible, more complex message structure.

Headers

Body

Headers

Body

Headers

Body

Headers

Body

Headers

Body

As can be seen, there is always just one outermost body that contains all other body-parts. In some

cases, for example X.400 the protocol seems to violate this by leaving out the outermost body-part.

However, even on those cases we must assume, at the abstract level, that the outermost body-part is

there.

However, this is not all that there is to the structure of a message. When a message is in transit, being

handled by MTAs it is put inside an envelope, just like a normal letter is inside an envelope while the

postal service is carrying it. Just like the postal service is not permitted to look inside the envelope,

neither are MTAs permitted to look inside. Whenever there is a need to look inside the envelope, it is

always a UA function, and done on behalf, and on the authority of, a UA.

There are some violations of this. When using the SMTP protocol, the Received: lines are put in

the headers by MTAs. This is bad engineering, but as the process of adding a new header line is

fairly straightforward, it doesn't cause too much pain. In some cases MTAs, and especially the GWs

modify the header even more, and sometimes they even mess with the body. This is a sure recipe for

trouble.

Graphically, the way a message should be dealt with is shown in �gure Figure 1-4.

3

Chapter 1. Introduction to Email

Figure 1-4. How a message should be handled.

 by MTA
Received

 by MTA
Received

 by MTA
Received

Received
 by MTA

Received
 by MTA

Received
 by MTA

UAUA MTAMTAMTA

From: N.N.
To: Mr...
Date: 17 May 1998
Subject: New proposal

I would like to
...
...
Yours sincerely,
 N.N.

Dear Mr...

From: N.N.
To: Mr...
Date: 17 May 1998
Subject: New proposal

I would like to
...
...
Yours sincerely,
 N.N.

Dear Mr...

From: N.N.

To: Mr...

Stamp

From: N.N.

To: Mr...

Stamp

From: N.N.

To: Mr...

Stamp

Message Routing Model

The user creates the message with the help of a UA. How the interaction is arranged is a local matter.

Once the message has been prepared, it is passed to a nearby MTA together with necessary envelope

information and put into an envelope. The MTA puts its stamp on the envelope to show that it has

received the message. The �rst MTA passes the message to the second MTA. The second MTA puts

its stamp to the message and passes it to the third MTA, and so on. The �nal MTA passes the

message to a UA, and the envelope is removed.

There are at least three ways to pass the message from an MTA to a UA. The message may be

pushed to a (running) UA, a UA may pull it from an MTA, or an MTA may pass the message to an

MS from which a UA will receive it at a convenient time.

The normal UNIX way of delivering mail (/usr/spool/mail/user) can be seen as any of the

above three mechanisms, but should normally be seen as a UA pulling a message. The reason for this

confusion is with the de-facto SMTP standard MTA, Sendmail.

Although Sendmail is in many ways a very clever piece of software, it is also the reason for many

problems, as it has blurred the line between MTA and UA. Sendmail is clearly an MTA, but it also

performs many of the UA level functions, like handling of �.forward� �les. This behaviour has

become the de-facto standard way for UNIX MTAs to behave, making it necessary for any MTA,

including ZMailer, to behave the same way.

1.1.2. Routing And Delivering Messages

As MTAs only deal with envelopes, all routing and delivery decisions have to be based on

information available on the envelope. It follows from this that the envelope and headers may contain

con�icting information. This is normal, and is not a cause for worry.

MTAs may, and often do modify addresses present in the envelope. This might include changing

addresses to a format more suitable for mail delivery and alias expansion.

4

Chapter 1. Introduction to Email

It is important to make a distinction between aliasing and forwarding mail. Aliasing is an MTA

function, in which an MTA effectively knows that to reach a seemingly local user, mail should be

sent to a different address. To accomplish this, the MTA changes the recipient information on the

envelope. Forwarding is a UA function. When forwarding, the mail message is received by the

original, intended recipient, and re-sent to another address. Although forwarding is a UA function, it

doesn't have to result in a change to body or headers, but on the envelope, both sender and recipient

should be changed. Sendmail bluntly violates this, and makes most other MTAs violate it as well.

Most mailing lists today are just alias expansions, on which one recipient address on the envelope is

replaced with multiple addresses. In many cases this is a reasonable approach. However, all major

mailing lists should be set up as a UA function. This involves changing not only the recipient address

but also the sender address in the envelope. In this way, undeliverable messages are sent to the owner

of the list, who can deal with the problem, and not to the sender of the message, who can do nothing

to remedy the situation. (The ZMailer has some built-in facilities for this, see about Mailing Lists. . .

on section Section 13.2.2.)

Error messages must be sent to the envelope sender address, as this is a MTA function.

Replies to messages should be sent to header addresses, because replying is a UA function.

5

Chapter 1. Introduction to Email

6

Chapter 2. ZMailer's Features, and Facilities

2.1. Introduction

ZMailer is a mailer subsystem for the UNIX operating systems. It is in charge of handling all mail

messages that are created on a system, from their creation until �nal disposition locally or by transfer

to another system.

As such, the mailer subsystem (the Message Transfer Agent) must interface to local mail reading and

composing programs (User Agents), to the various transport methods that can be used to reach other

mailers, and to a variety of databases describing the mailer's environment.

ZMailer provides this functionality in a package and with a philosophy that has bene�tted from

experiences with earlier mailers.

ZMailer provides a capable, robust, ef�cient subsystem to do the job, which will excel in demanding

environments, but is technologically simple enough to �t easily everywhere. (In UNIX-like

environments.)

However ZMailer is not smallest memory footprint MTA there is, nor it tries to be. What it has and

does, are ways to limit resource expenditure, while still providing high-performance services. One

can't very easily overwhelm a machine where ZMailer MTA runs by just feeding it too much work

in parallel. (Message Queues can grow beyond any reason, but even there are safety limiters.) Limits

are available for example:

� Number of parallel incoming SMTP sessions overall

� Number of parallel incoming SMTP sessions from any given single IP address

� Number of messages per source IP address in timeframe

� Number of parallel internal processing programs

� Number of parallel SMTP sessions feeding messages outside

For ZMailer's incoming SMTP interaction there are ways to de�ne, that the usual anonymous user

from given address space can send only so many messages with only so many recipients per time

interval. Such limits help keeping Zombie botnet Windows machines from causing too much trouble.

Technology aimed for keeping such service abusers under control is ever evolving, and can probably

never be 100% capable. Also the abusers do learn rather quickly what is bad in their behaviour, and

they do modify their programs to get past any �lters thrown at them. At the same time, legitimate

users are hadly ever evolving their behaviour, and are always behaving rather foolishly, or rather

their used UA softwares behaves more like hijacked Zombies, or perhaps there is just a NAT box,

and several users beyond it...

In the longer run, service providers will need bigger and bigger servers (or clusters of smaller

servers) to make their inbound and outbound SMTP services. They will also need ways to track user

behaviour online, and if necessary, modify reaction algorithms in timescales of few hours. Further

complication is, that the service providers need different behaviour models according to "this is

Consumer" vs. "this is Corporate" customer. Corporate clients usually have some MTA of their own,

and thus their legitimate network behaviour is a lot more like what spammers do these days, and

separating spammer hijacked system there is really dif�cult.

7

Chapter 2. ZMailer's Features, and Facilities

2.1.1. Design Summary

Figure 2-1. ZMailer's processes.

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

ZMailer is a multi-process mailer, using three daemon processes to manipulate messages. Used

technologies are as simple as possible, e.g. while networking stuff is as advanced as possible (with

fallbacks to simplest basic behaviour), some of other modern things (like threads) are not used in

favor of simpler approaches

� Message arrive in via sendmail program "API" for internally originated messages, or via

Smtpserver subsystem, which is system front-door for messages coming in from the external

network. The Smtpserver is in reality a cluster of auxiliary programs providing ef�cient

low-overhead support for various analysis things needed while messages are coming in. Second

one of these processes is a Router, and makes all decisions about what should happen to a

message; routing and possibly message header visible things rewriting. The third daemon is a

message queue manager, Scheduler, used to schedule the delivery of messages. The Router uses a

con�guration �le that closely follows Bourne shell script syntax and semantics, with minimal

magic. Message �les are moved around in a series of directories, and the Scheduler and its

Transport Agents run off of control �les created by the Router.

� The Sendmail is very simple "plug-compatible" message submission agent for system internal

message submissions into the ZMailer MTA, and does all its things without any sort of set-uid

privilege escalation needs.

� The Smtpserver has evolved into rather complicated animal, as it aims to really ef�ciently

support things that in the early days required truly heavy-weight auxiliary program startups for

every incoming SMTP connection -- startup of such auxiliaries has now been shared over a large

number of arriving connection and messages by means of having them as Smtpserver's permant

auxiliary helpers:

� First is a slightly less burdened Router for determining if source or destination address

domains are possibly known in the system, and primarily being able to reject messages at front

8

Chapter 2. ZMailer's Features, and Facilities

door that are destined to nonexistent addresses. (This instance is separate from main Router,

and thus is somewhat duplicating main Router's task, but this doesn't e.g. do list expansions and

other such expensive things.)

� There is also Content-Filter that can be used up to how ever complicated message content

analysis syncronously with incoming message feed (there is also a possible "input" subdirectory

for of�ine non-synchronous content analysis, however synchronous processing has certain

appeal in itself, not the least the ability to tell message sender to go and stuff their SPAMs

into...)

� And third is the Rate-Tracker subsystem, that can keep track of such things as

"Non-authenticated customer at IP address N.N.N.N has sent more than 60 messages in past

hour, stop that sending until the sliding window allows more to be sent."

These auxiliary servers do operate so that when smtpserver-subsystem shutdown has been

ordered, and last client needing support goes away, they drop away themselves.

� The main Router subsystem will process messages one at a time (per Router instance), as it �nds

them in a directory where User Agents submit their outgoing messages. Message Envelope and

Message Header information is all kept in the same message �le along with the message body, and

this �le is never modi�ed by any ZMailer program. After parsing the envelope and RFC822

header information, the Router validates the information extracted, and calls functions de�ned in

the con�guration �le to decide exactly, how to deliver the message and how to transform the

embedded addresses. The algorithms that do this are easily re-con�gurable, since the control �ow

and address manipulation is speci�ed by familiar(ish) shell script statements. When the Router is

�nished on a message, it will produce a message control �le for use by the delivery processing

stage of ZMailer, and move the original message �le to another location.

� Once the main Router subsystem has decided what to do with each of the addresses in a message,

the Scheduler builds a summary of this information by reading the control �le created by the

Router. This knowledge is merged with a data structure it maintains that stores which messages

are supposed to be sent where, and how. According to a pre-arranged agenda, the Scheduler will

execute delivery programs to properly move the message envelope, header, and body, to the

immediate destination. These delivery programs are called Transport Agents, and communicate

with the Scheduler using a simple protocol that tells them which messages to process and returns

status reports to the Scheduler. The Scheduler also manages status reports, taking appropriate

action on delivery errors and when all delivery instructions for a message have been processed.

� There are several standard Transport Agents included with the ZMailer distribution. The collection

currently includes a local delivery program, an SMTP client implementation, and a Transport

Agent that can run Sendmail-M-line-compatible delivery programs.

� A separate mailq utility allows querying the Scheduler for the state of its queues. For existing

Sendmail installations, a replacement program is included that simulates most of the Sendmail

functionality in the ZMailer environment. This allows ZMailer to replace a Sendmail installation

without requiring changes in standard User Agents.

� Several other tools and utilities exist for other speci�c purposes.

� There are also facilities that allow loosely coupled cluster creation. Each member machine of the

cluster is separate entity, but they can keep track of rate-tracking data of all of their neighbours, as

well as activate on demand ETRN queue �ush in cluster wide setup. None of these is guaranteed in

any strict way, which makes their implementation technology considerably simpler, and also

occasional limits that they implement are not considered to be upheld rigorously under every

possible conditions. A tripple-sigma reliability on e.g. limit enforcement is considered "a plenty

good enough".

9

Chapter 2. ZMailer's Features, and Facilities

In loosely coupled clusters, delivery to system internal (UNIX-style) message store is not

clusterized, unless the store in question is some sort of e.g. LMTP connected external Message

Store. (Even UNIX-style mailbox �les may work, if underneath there is some sort of cluster-wide

�lesystem, which has working FCNTL locks.) One such way was once to use front-line

processing to map arrived message to actual recipient and node into which it was expected to go,

and to proxy POP and IMAP services so that users didn't need to know on which node their

mailboxes did actually reside.

Figure 2-2. Directories that ZMailer uses for message processing.

$POSTOFFICE/router/

$POSTOFFICE/queue/

$POSTOFFICE/transport/

Submit by rename() into

the message, it rename()s
the file into the "queue"−dir,
and creates control file into
the "transport" directory.

new files in its directory,
it starts scheduling and
submission of them to the
delivery.

12345−3

12345−3

12345−3
When the Scheduler sees

When Router finishes with

Router’s directory

12345

$POSTOFFICE/public/

12345 (/usr/lib/sendmail)
User creates mail

$POSTOFFICE/input/
Possible pre−router spool for e.g.
some email virus scanner

2.2. Running ZMailer

ZMailer is fairly simple to run, once the setups are completed it can be left to run on its own with

very little supervision.

Things that might need supervision are things like:

� Timely cycling of log �les, which otherwise will grow until they �ll all of the available disk space

(One need not log everything possible, about the only thing this system does not allow you to log

is the message body content.)

� Keeping watchful eye on $POSTOFFICE/freezer/, and $POSTOFFICE/postman/ directories.

Former for processing SPAM email, latter for pathological problem cases.

�Logging and Statistic for the Administrator:� Chapter 16, �Checking the Log Files:� Section 4.6,

�Trim-down of Logging:� Section 4.8, �Postmaster Analysis Area:� Section 11.4.

10

Chapter 2. ZMailer's Features, and Facilities

We look closer into these issues at latter parts of this document, but now it is suf�cient to tell, that

the principal tool for active monitoring of the system health is command:

$ mailq -ss

which does tell, if router, or scheduler are up and about, or not, and also does tell about the sizes of

the different sub-spools.

The general management interface for starting and stopping different subsystems is command

zmailer

which the system installs into $MAILBIN/ directory, and which command usually needs a symlink to

itself from some more common location for administrative convenience (/usr/sbin/zmailer ->

$MAILBIN/zmailer) so that the administrator does not need to add $MAILBIN/ directory into his

or her PATH. On overall, it is intention that not even admin user should need to run directly the

programs located at the $MAILBIN/ directory.

Basically the administration is as follows:

� At system start-up (to start all subsystems):

zmailer

� At system shutdown (to kill all subsystems):

zmailer kill

There is also a way to make sure the system will not let the ZMailer to start at the system start-up,

because you have some massive work going on, and the system is not in condition to accept email

for a while:

zmailer freeze

and the antidote for the �freeze� is, naturally:

zmailer thaw

Normal operations can not be started at �frozen� system without �thawing� it at �rst.

The user-visible component of the ZMailer is (for de-facto interface)

$ /usr/lib/sendmail

(a.k.a. /usr/sbin/sendmail) which is �simple� message submission program that mimics

sendmail commands behaviour, but of course many details of sendmail are not really implemented at

all, mostly because they do not have equivalents in the ZMailer system.

There are also functional equivalents (or near equivalents) of other sendmail/system utilities:mailq,

newaliases, and vacation.

11

Chapter 2. ZMailer's Features, and Facilities

2.3. Factors Affecting Overall System Performance

� Speed of $POSTOFFICE/ directory �lesystem. Speci�cally directory metadata operation speed (e.g.

fully synchronous directory metadata update is way slower, and safer, than fully asynchronous.)

� Possible separate �lesystem spindle on $POSTOFFICE/transport// directory.

� Amount of memory, and thus �lesystem buffering, and (lack of) swapping by component

processes.

� DNS server quality

� �Staticness� of routing data, e.g. the less there is DNS lookups involved for email delivery, the

better it works.

12

II. Build and Install
This section describes how to build and install ZMailer.

Tip: Consider joining the ZMailer user-community email list, or at least reading/searching its

archive. It is the place to meet the Gurus, in case you have problems. See the �Overview� �le in

the source distribution for more information.

Chapter 3. Build and Install

3.1. Environment Issues

The cornerstone of everything in busy Internet email routing is a well-working DNS server, and

modern resolver library. If you use the BIND name-server, you should be using (or install) a recent

version, As of this writing (January 2006), BIND server developers recommend version 9. They also

strongly recommend, that you do not let zone data masters (either masters, or slave copies) to do any

recursive resolving, and do recursive resolvings with servers that do not have locally mastered data.

For performance reasons you should have local instance of recursively resolving caching

name-server. (And for security reasons it should not do any local DNS zone masterings.)

You may also want to support any of following facilities by pre-installing them into your system

(before compiling and installing ZMailer, that is):

� OpenSSL for in- and outbound encrypted SMTP sessions

� TCP-Wrapper (can also do without it)

� LDAP client library (if necessary)

� Private replacement library for getpwnam(), and/or for zgetpwnam()

� Whoson service to tie in with e.g. POP and IMAP servers for authenticating SMTP relaying. (But

the use of SMTP authentication is de�nitely preferred instead of using external hacks like

"POP-before-Post".)

3.2. Auto-con�guration

The zmailer.conf �le carries various so called �ZMailer Environment� con�guration variables.

In following we refer to those often in style of:

$MAILVAR $MAILSHARE ...

Which essentially means expanding in Bourne-shell like manner given ZENV-variable from this �le.

The location of this �le is de�ned at system con�guration, originally it was at:

$MAILSHARE/zmailer.conf, but these days more often at the $MAILVAR/.

This system uses several preferably separate partitions for different things:

� Software binaries, and databases: $MAILBIN/ (site shared, read-only), $MAILSHARE/ (site shared,

read-only), $MAILVAR/ (node local db's, r/w)

� The mailbox spool: $MAILBOX/ (/var/mail)

� The postof�ce spool: $POSTOFFICE/ (/var/spool/postoffice/)

� The log directory: $LOGDIR/ (/var/log/mail)

15

Chapter 3. Build and Install

Important: A �lesystem without following two properties is not suitable for ZMailer's

$POSTOFFICE/:

� Files must succeed to be link(2):ed in between directories within the �lesystem without

copying them.

� The �le i-node numbers must not change with rename(2) or link(2) calls applied to them.

Most of the $POSTOFFICE/ directory must be a single mounted �lesystem within which �les can be

link(2)ed from one directory to another, as well as moved around with rename(2)

However, the $POSTOFFICE/transport/ subdirectory can be separate �lesystem mounted under

$POSTOFFICE/! Such arrangement can (under some situations) result in additional system

performance, as transport agents need to modify (write locks) �les in the

$POSTOFFICE/transport/ subdirectory, while they only read (without locks) �les in

$POSTOFFICE/queue/ subdirectory.

Adding system reliability in form of having directory data committed to disk at the time of the

directory modifying operations returning with success is a nice bonus, although in normal

UFS-like cases that taxes system performance heavily.

E.g. running fast-and-loose with async metadata updates in Linux EXT2 �lesystem gives you

performance, but in case the system crashes, your postof�ce directory may be in shambles, and

important email may have been lost.

How exactly you can combat the problem is yours to choose. Most �lesystems for UNIX have lots

of different options at mount-time, and also by-directory attributes can be set to control these

things. Check yours after your decide on what kind of data loss threat you can tolerate at the

expence of what speed reduction. (E.g. 300+ day straight uptime with power surges during a

thunderstorm at the end of it toasting your machine along with its disks and �lesystems, but

trouble-free running until then ?)

The GNU autoconf mechanism is used, however, you still may need to touch on some �les after that

system has run through: You MUST de�ne --prefix= so that ZMailer components end up in

reasonable places. The $MAILBIN/ (and $MAILSHARE/, and $MAILVAR/) variable values are derived

from the --prefix=, which can cause surprises if you domake install with GNU autoconf defaults.

When choosing your pre�x, do try to keep is fairly short, as there are a few scripts which concatenate

string-components of:

"#! "+prefix+"/bin/router -f"

and usually systems have a limit of 32 characters for that, which gives at most 15 characters for your

pre�x!

Also, if the $MAILSHARE/zmailer.conf �le exists1, it is read to initialize several different

environment paths (including $MAILBIN/, et.al.!)

./configure \

--prefix=/opt/mail \

--with-postoffice=/var/spool/postoffice \

--with-mailbox=/var/mail \

--with-logdir=/var/log/mail

Or an example from my development machine:

$./configure --prefix=/opt/mail

16

Chapter 3. Build and Install

creating cache ./config.cache

*** You can set ZCONFIG environment variable to define

*** the location of the (default) /opt/mail/zmailer.conf -file

*** (You can use also --with-zconfig= -parameter)

*** Consider also setting following parameters:

*** --mandir=DIR -- for man-pages

*** --libdir=DIR -- for libzmailer(3)

*** --includedir=DIR -- for libzmailer(3)

*** (They can be outside the --prefix=DIR -tree)

*** You can set CC, and CFLAGS environment variables to

*** choose the C-compiler, and its options, especially at

*** systems where there are multiple choices to use...

You can also go into a sub-directory, and con�gure and compile there: (But it may need GNU make

as system �make�!)

$ mkdir myhost ; cd myhost

$../configure ...

$ make ...

See if SiteConfig makes sense now, if not, you can tune most of the values with various

--with-*= keywords:

$./configure --help

Explanations about these con�guration options are listed at chapter Chapter 6.

Those options that you can't tune, you can edit at the �SiteConfig.in� �le. (Redo the con�gure

with new parameters, if that looks to be necessary approach.)

Additional examples:

� DEC OSF/1 at nic.funet.� with DECs best compiler. . .

$ CFLAGS="-O -g3 -std1" CC="cc -migrate" \

./configure --prefix=/l/mail

� Sun Solaris 2.5 at mailhost.utu.�, SunSoft CC

$ CC="cc -O" ./configure --prefix=/opt/mail

� Sun Solaris 2.5 at mailhost.utu.�, gcc-2.7.2

$./configure --prefix=/opt/mail --with-gcc

� Sun Solaris 8 at marsu.funet.�, gcc-2.95.2 (egcs-1.1.2)

$ 'CC='gcc' CFLAGS='-g -O' ./configure \

--prefix=/opt/mail --with-ipv6 \

--with-zconfig=/opt/mail/zmailer.conf

� Linux-2.0.x/libc-5.4.2 at mea.cc.utu.�, gcc-2.7.2

$./configure --prefix=/l/mail

17

Chapter 3. Build and Install

3.3. Compilation

At the top-level, run

$ make

or perhaps:

$ make clean all

which at �rst cleans everything, and then makes � great if you changed some con�guration

parameters.

This should compile everything, and leave a zmailer.Config �le in the top-level directory.

Nothing outside the source area will be touched at this point.

(If your system �make� lets your shell �SHELL� environment affect its own execution environment,

it may be that non-sh/ksh/zsh users detect weird phenomena, and failures. Beware!)

3.4. Installing and Upgrading

This section describes how to install or upgrade ZMailer.

3.4.1. Install Preparation

If you are currently running a zmailer, kill off all mailer processes using

$ zmailer kill

and save the state of your system. This includes any active contents of the $POSTOFFICE/, as well as

database �les and anything else in the installation areas you want to be sure to keep. This is just

paranoia, the installation should not overwrite precious �les, and will save old versions of

distribution �les in �bak/� sub-directories.

The interface in between the commonly used sendmail, and ZMailer is a �compatibility program�,

which is to replace the /usr/lib/sendmail (a.k.a. /usr/sbin/sendmail on some systems).

The system attempts to automate the replacement, but it may present a cry for help if your system

does not have functioning symlinks. Also if �test -h $SENDMAILPATH� does fault in mysterious

ways, the reason may be that your system does not have symlinks.

If you are currently running Sendmail, kill your SMTP server and drain the Sendmail queue. There is

no automatic method to re-queue Sendmail messages under ZMailer. If you later want to back out to

Sendmail, all you need to do is move the former version of the sendmail (on

/usr/lib/sendmail.bak, for example) binary back to /usr/lib/sendmail.

(You may also need to do some magics with system start-up scripts in case you are running

SysV-style init. BSD /etc/rc.local does need its own gymnastics too. Sample SysV-init script is

at �le: �proto/zmailer.init.sh�)

A sort of method to quickly handle your sendmail queue is to start ZMailer's SMTP server,

recon�gure the old sendmail to use smart-host, which happens to be at the same machine. (Or at an

adjacent machine if you moved the queue, or . . .) Anyway the point is to get the sendmail to send its

queue via SMTP to the ZMailer. An equally valid option is to drain the sendmail's queue by running

sendmail in queue drain mode only, although /usr/lib/sendmail points to ZMailer's

�sendmail.�

18

Chapter 3. Build and Install

3.4.2. Installation

Once you are safe, run:

make install

$MAILBIN/post-install -MD5

(Substitute $MAILBIN with the path where your binaries go)

This installs all binaries and the default con�guration and database �les, as well as creates

$POSTOFFICE/ directories. The con�gurations will still need editing! See below.

The post-install handles important activity in tracking the base versions of con�guration �les by

storing MD5 check-sums of original �les with .md5 suf�x tagged to them into their original location

(proto/ sub-directories). This way when sysadmin changes something, the new run of post-install

will detect the changes and not write over such �le.

There exists also a way to do the installation into a �parallel universe� by means of install-time

�pre�x� environment variable:

. SiteConfig

DESTDIR=/var/tmp/build

make install DESTDIR=$DESTDIR

$DESTDIR$MAILBIN/post-install --destdir $DESTDIR

which of course expects to have �/var/tmp/build/� directory in existence, and possibly some

others under it, but you will soon see, what it needs. (But post-install does not support that, and so it

needs to be used at the last stage of packaged ZMailer's installation)

3.4.3. Installing the Manual Pages.

Because for a long time the installation location of ZMailer's man-pages has not had an obvious

destination location, normal �make install� run at the top-level does not install them!

Go into the man/ directory, and install the manual pages by hand:

cd man

make

This will tell what you can order it doing, and what is the default for MANDIR is at the moment. If the

default is right:

make install

or in case the default guessing didn't get it right:

make install MANDIR=/our/manpages

Notes

1. Default location is $MAILSHARE/zmailer.conf, and it can be changed with

--with-zconfig= option.

19

Chapter 3. Build and Install

20

Chapter 4. System Con�guring

4.1. Run-time �les

This section describes the con�guration in short. More detailed information can be found in

Administration and Reference parts.

4.1.1. zmailer.conf

The zmailer.conf �le carries various so called �ZMailer Environment� con�guration variables.

In following we refer to those often in style of:

$MAILVAR $MAILSHARE ...

Which essentially means expanding in Bourne-shell like manner given ZENV-variable from this �le.

The location of this �le is de�ned at system con�guration, originally it was at:

$MAILSHARE/zmailer.conf, but these days more often at the $MAILVAR/.

This system uses several preferably separate partitions for different things:

� Software binaries, and databases: $MAILBIN/ (site shared, read-only), $MAILSHARE/ (site shared,

read-only), $MAILVAR/ (node local db's, r/w)

� The mailbox spool: $MAILBOX/ (/var/mail)

� The postof�ce spool: $POSTOFFICE/ (/var/spool/postoffice/)

� The log directory: $LOGDIR/ (/var/log/mail)

4.1.2. /etc/group

The default con�guration also expects to �nd names of trusted users listed at /etc/group entry

zmailer. Users (unames) listed there will be able to claim any addresses at the message headers,

etc. (See $MAILSHARE/cf/trusted.cf for its usage there.)

The usual minimal set is: root,daemon,uucp. (Note: At some machines �daemon� is called

�daemons�; It must be on that group for the smtpserver to be able to work properly!)

Warning
SECURITY ITEM: Those users at zmailer group must not contain nobody!

The nobody is used to prevent externally given inputs from being able to

execute arbitrary programs at the system, or from writing to arbitrary �les.

21

Chapter 4. System Con�guring

4.1.3. /etc/services

Add the following line to /etc/services in the section for host-speci�c services:

mailq 174/tcp # Mailer transport queue

Indeed this isn't quite mandatory, as the scheduler subsystem can be con�gured to use different IPC

socket. See more about this at Scheduler's PARAM entries: Section 22.1.1.

4.2. The Router subsystem

4.2.1. The Router Con�guration File

($MAILSHARE/router.cf).

You must now pick a top-level router con�guration �le. The default is provided in

proto/cf/SMTP.cf(.in). (The post-install places it into $MAILSHARE/router.cf).

You need to verify $MAILSHARE/router.cf.

Some real-life samples of router.cf are at the proto/ directory in the source tree.

4.2.2. $MAILVAR/mail.conf

If you are using the default con�guration setup, the router.cf �le expects to �nd a

$MAILVAR/mail.conf �le containing three variable de�nitions:

Where am I?

orgdomain=domain

Who am I?

hostname=host.subdomain.$orgdomain

Who do I claim to be?

mydomain=subdomain.$orgdomain

For example:

orgdomain=toronto.edu

hostname=relay.cs.$orgdomain

mydomain=cs.$orgdomain

Create $MAILVAR/mail.conf with appropriate contents. If you are a multi-host site, determining

these things can be automated according to your local policies and conventions. See the �les speci�c

to the University of Toronto (UT*.cf) for examples of this.

Location of this �le is written in $MAILSHARE/router.cf. By editing that entry you can alter it.

22

Chapter 4. System Con�guring

Caution
Note that �hostname=� entry above is not alone suf�cient for getting the

system to know all of the domains it should consider as local. See below about

localnames database.

4.2.3. Verifying That the Router Starts

At this point, you should be able to start the router process in interactive mode. Run:

$MAILBIN/router -i

or

/usr/lib/sendmail -bt

You should see something like:

ZMailer router (2.99.55 #4: Tue Feb 22 15:24:09 EET 2001)

you@hostname:/some/path/to/src/zmailer/router

Copyright 1992 Rayan S. Zachariassen

Copyright 1992-2001 Matti Aarnio

Configured with command: 'CC='gcc -Wall' CFLAGS='-g -O' ../configure …'

z#

If there are errors in the con�guration �le, you will be told here. The �z#� is the interactive prompt

for root. It is unlikely you can do anything useful before setting up the data �les, so get out of this by

hitting EOF, or type exit.

4.2.4. The Router Database Files

Now you should merge, replace, and very least check the default database and forms �les against

your previous setup.

In older systems users had �xed choices on which databases to have at the router subsystem for

which looked up relation. Newer systems have $MAILBAR/db/dbases.conf con�guration �le to

tell the association of database to look-up relations, and also the source �les.

4.2.4.1. $MAILBIN/zmailer script

You may want to add a symbolic link from some directory in your path to $MAILBIN/zmailer, if

you don't already have this. I put this link in /usr/local/sbin.

This script is skeleton driver for lots of things in the ZMailer, including the not so small a feat of

acting as SysV-Init's init-script as well.

23

Chapter 4. System Con�guring

4.2.4.2. $MAILVAR/db/dbases.conf �le

As mentioned above, this �le con�gures (when exists) database look-up functions versus actual

back-end databases.

With this �le one can have e.g. multiple aliases databases which are bound together in

pre-determined query order (�rst matcher wins).

This con�guration �le is used to translate a semi-vague idea about what database sources (in what

forms) are mapped together under which look-up names, and what format they are, etc. . .

This is used by �zmailer newdb� command to generate all databases described here, and to produce

relevant .zmsh scripts for the router to use things. The �zmailer newdb� invocation does not

mandate router restart in case the database de�nitions have not changed; reverse is true: If

de�nitions are added/modi�ed/removed, the router must be restarted!

When you use �zmailer newdb� command, you recompile all databases de�ned in the controlling

con�guration �le $MAILVAR/dbases.conf -- or if you don't have that �le, then all databases listed

below, as creation/update of those are the system defaults.

For more complete example, see the default boilerplate version of this �le.

Figure 4-1. Sample of �$MAILVAR/db/dbases.conf� �le

#|Fields:

#| relation-name

#| dbtype(,subtype)

#| dbpriv control data (or "-")

#| newdb_compile_options (-a for aliases!)

#| dbfile (or "-")

#| dbflags (or "-") ...

#|

#| The dbtype can be "magic" '$DBTYPE', or any other valid database

#| type for the Router. Somewhat magic treatment (newdb runs) are

#| done when the dbtype is any of: *DBTYPE/dbm/gdbm/ndbm/btree

#|

#| The "dbfile" need not be located underneath of $MAILVAR, as long as

#| it is in system local file-system (for performance reasons.) E.g.

#| one can place one of e.g. aliases files to some persons directory.

#|

aliases $DBTYPE 0:0:644 -la $MAILVAR/db/aliases -lm

aliases $DBTYPE majordomo:0:644 -la /opt/Majordomo/md-aliases -lm

fqdnaliases $DBTYPE root:0:644 -la $MAILVAR/db/fqdnaliases -lm%

userdb $DBTYPE root:0:644 -la $MAILVAR/db/userdb -lm

routesdb $DBTYPE - -l $MAILVAR/db/routes -lm% -d pathalias

thishost $DBTYPE - -l $MAILVAR/db/localnames -lm -d pathalias

4.2.4.3. $MAILVAR/db/aliases �le

The provided skeleton aliases �le on purpose contains syntax errors, so you are reminded to change

the contents.

Choose one of the following methods to rebuild the database:

$MAILBIN/newaliases

24

Chapter 4. System Con�guring

$MAILBIN/zmailer newaliases

/usr/lib/sendmail -bi

/usr/bin/newaliases

$MAILBIN/zmailer newdb

If there are errors, correct them in the �aliases� �le, and repeat the command until the alias

database has been initialized. The �nal message should look something like:

319 aliases, longest 209 bytes, 16695 bytes total

exact numbers vary, of course. . .

See also IETF's RFC 2142: �Mailbox Names for Common Services, Roles and Functions�

(http://www.ietf.org/rfc/rfc2142.txt) (�le doc/rfc/rfc2142.txt) for other suggested aliases you

may need.

4.2.4.3.1. Alias expansion

Read the notes on alias expansion in the �le doc/guides/aliases and on mailing list

maintenance in Section 13.2.2, Mailing Lists and ~/.forward.

4.2.4.4. $MAILVAR/db/fqdnaliases �le

The fqdnaliases database is for mapping fully-quali�ed user addresses to others � for example

your machine has a set of domain-names for it to consider local, but you want to have separate

people to be postmasters for each of them as shown at Figure 4-2.

Figure 4-2. Sample of �fqdnaliases� �le

postmaster@domain1: person1

postmaster@domain2: person2

postmaster@domain3: person3, person4

It is also possible to shunt all recipient addresses for given domain to some arbitrary addresses as

shown at Figure 4-3.

Figure 4-3. Second sample of �fqdnaliases� �le

@domain4: person4

@domain5: %1@domain6

This facility is always in stand-by � just add the �le, and you have it at the next router start-up.

The �%1� local part is special (and experimental, as of 21-Feb-2001) substitution pattern where local

part (user) can be replaced into the looked up data. More details at Section 21.5.16 (dblookup), and

at Section 21.5.50 (relation declaration).

You may even handle just a few users for each of those domains, and then have the �routes� entry

(see below at Figure 4-5) to declare something suitable:

.domain1 error!nosuchuser

.domain1 error!nosuchuser!%0

25

Chapter 4. System Con�guring

which combined with the �fqdnalias� method will let �postmaster@domain1� to exist, and

report error on all others.

Choose one of the following methods to rebuild the database:

$MAILBIN/newfqdnaliases

or either of:

$MAILBIN/zmailer newfqdnaliases

$MAILBIN/zmailer newdb

If there are errors, correct them in the �fqdnaliases� �le, and repeat the command until the alias

database has been initialized. The �nal message looks similar to that of the ordinary aliases case.

If you have multiple fqdnaliases databases de�ned at the dbases.conf, you must use the �zmailer

newdb�. (See Section 24.1.8.)

4.2.4.5. $MAILVAR/db/localnames �le

Add the host-names you want ZMailer to do local delivery for, to the $MAILVAR/db/localnames

�le. Due to my own belief in Murphy, I usually add partially quali�ed domain names and nicknames

in addition to canonized names. If you want to do local delivery for mail clients, put their names in

here too. You may use pathalias style �.domain� names in this �le, to indicate everything under some

subdomain.

With the sample con�g �les for ZMailer-2.98, and latter, this localnames is actually a mapping of

those various names to the desired forms of the canonical name, thus an example as seen in �gure

Figure 4-4.

Figure 4-4. Sample of �localnames� �le

#

Left: input name

Right: what is wanted to be shown out

#

List here all names for the system

#

astro.utu.fi astro.utu.fi

oj287 astro.utu.fi

oj287.astro.utu.fi oj287.astro.utu.fi

oj287.utu.fi astro.utu.fi

sirius sirius.utu.fi

sirius.astro.utu.fi sirius.utu.fi

sirius.utu.fi sirius.utu.fi

In certain cases the router is able to deduce some of the names, however smtpserver anti-relay

policy compiler will not be able to do so, and needs this data!

THUS: All names that the host may ever have are best listed in here! It reminds you of them, and

makes sure a message destined into the host really is accepted.

Compile this into run-time binary database with command:

zmailer newdb

26

Chapter 4. System Con�guring

(fall-back method is sequential re-scan of the text �le)

4.2.4.6. $MAILVAR/db/routes �le

Add any UUCP neighbours or other special cases to this �le. For an example see Figure 4-5.

You can compile the �le into binary database with command:

zmailer newdb

Figure 4-5. Sample of �routes� �le

#

�routes� mapping file

#

.toronto.ca error!err.wrongname

.toronto.cdn error!err.wrongname

alberta uucp!alberta

atina smtp![140.191.2.2]

calgary smtp!cs-sun-fsa.cpsc.ucalgary.ca

icnucevm.bitnet smtp!icnucevm.cnuce.cnr.it

4.2.4.7. UUCP Node Names

If your hostname and UUCP node name are not identical, put your UUCP node name in the �le

/etc/name.uucp (or /etc/uucpname).

4.2.5. Checking the Routing

At this point, you should be able to start the router again in interactive mode, and ask it to route

addresses. Try either of:

/usr/lib/sendmail -bt

$MAILBIN/router -i

at the prompt:

z# router you

(where �you� is your login-id, naturally) should print out:

(((local you you default_attributes)))

Keep playing around with various addresses until you get a feel for it. Modify the con�guration �le

if your setup requires it.

To give more feeling of what goes on during the �route�-command, you can give command �rtrace�

before trying to use �route.�

27

Chapter 4. System Con�guring

4.3. The Smtpserver subsystem

The smtpserver implements RFC-821 server along with lots of latter extensions.

Con�gurable subsystems are:

� Generic server parametrization with �smtpserver.conf� �le.

� Relaying policy control via �smtp-policy� database.

� Optional message content analysis via �content�lter� mechanism.

� Optional PAM authentication framework for SMTP AUTH extension.

� Optional externally driven program to autenticate users; command line contains username, and

STDIN gets the user supplied password.

See the Administration Chapter 12 for further details.

4.3.1. The �smtpserver.conf�, and smtp-policy databases

These take care of such a things as preventing relay-hijack type of abuse of your system.

Basically you want to install the boilerplates and the tool scripts, edit them a bit, and run

policy-builder.sh script. For further details on this, see chapter Section 12.2.

In smtpserver front you may need to lower the strict standards of the basic RFC-821 SMTP protocol

and allow acceptance of non-quali�ed addresses � ones without any sort of domain name in them.

Another thing to allow is (sigh) MS-Windows-CE 1.0/2.0 gadgets with their totally broken SMTP

sending system.

Both of these things are handled by �EHLO-style options� described at chapter Section 12.1.2.

4.3.2. Testing smtpserver operationality

The smtpserver can be tested fully with fairly simple method -- as long as input databases are

readable by the test runner:

$ $MAILBIN/smtpserver -i -d 1 -T '[1.2.3.4]'

$ $MAILBIN/smtpserver -i -d 1 -T '[ipv6.11::33]'

Above the bracketed dotted decimal address literal is source address used at policy function testing,

and one should vary there systems which are allowed to relay thru the server, and also systems

which are not allowed to relay thru the server.

Do testing by issuing normal SMTP protocol transactions, and observing the results:

000- Lots of debug information

...

220 some greeting

EHLO foobar

000- Lots of debug information

...

250-local.host.name Hello foobar

250-8BITMIME

250-PIPELINING

28

Chapter 4. System Con�guring

...

250 HELP

MAIL FROM:<>

000- Lots of debug information

...

250 Ok ...

RCPT TO:<user@some.where>

000- Lots of debug information

...

250 Ok ...

If you want to do testing without excessive amount of debug information, do leave out �-d 1� part of

the start arguments.

4.4. The Scheduler subsystem

4.4.1. Checking the Scheduler

The location of the scheduler.conf on running system is $MAILSHARE/scheduler.conf

For normal operations of the system the current sample of �scheduler.conf� �le is quite

suf�cient, but in case you want to do something unusual, like using procmail for local delivery, do

read on.

The default �scheduler.conf� contains also linkage to �scheduler.auth� (see Section 22.3),

which is access-control for interacting with the scheduler from external programs, likemailq.

In Figure 4-6 there are some salient points about tuning the �local� channel behaviour.

Figure 4-6. Sample of �scheduler.conf� passage for �local/*� selector

local/*

interval=5m

idlemax=9m

expiry=3d

want 20 channel slots, but only one HOST

maxchannel=15

maxring=5

Do MIME text/plain; Quoted-Printable -> text/plain; 8BIT

conversion on flight!

command="mailbox -8"

Or with PROCMAIL as the local delivery agent:

#command="sm -8c $channel procm"

Or with CYRUS server the following might do:

#command="sm -8c $channel cyrus"

There are three variants of the �command=� entry:

command="mailbox -8"

The normal ZMailer mailbox(8) channel program.

29

Chapter 4. System Con�guring

command="sm -8c $channel procm"

Variant for running procmail.

command="sm -8c $channel cyrus"

Variant for using CMU Cyrus message store server.

For more information regarding scheduler con�guration language, see Section 22.1.

4.4.2. Checking scheduler.auth �le

Access-control to the Scheduler's internal state data is de�ned at �le scheduler.auth, which

should be usable in its default form.

For more information about this, see Administration Section 14.5, and Reference Section 22.3.

4.4.3. Checking sm.conf �le

For some uses the scheduler runs sm(8) program � called �sendmail-like mailer�.

This supports most of sendmail's M-entry �ags, at least �ags with versions previous to 8.11(.0)

The ZMailer sm(8) channel program is used to create support for things like:

� uucp transmits

� procmail as local delivery agent

� supporting CMU Cyrus message store as local delivery agent

For more information, see Section 23.4.1.

4.4.4. Customizing ZMailer Messages

Edit several of the canned error messages and programs (scripts) to re�ect your local con�guration:

$MAILSHARE/forms/ �les and $MAILBIN/ta/usenet (injected message).

Normally the boilerplate messages looks something like these:

HDR From: The Post Office <postmaster>

HDR Sender: mailer-daemon

SUB Subject: Errors: No such user(s)

ADR Bcc: <postmaster>

This is a collection of reports about email delivery

process concerning a message you originated:

In these, �ADR� lines de�ne header lines which are to be analyzed for recipient addresses, while

�HDR� lines can carry anything which doesn't get output as envelope address. The �ADR� line

contained addresses must be in brackets, and there can be only one address per such header. If there

are more, only the �rst one is picked.

More details at Scheduler Administration Section 14.7.1, and at Scheduler Reference Section 22.7.

30

Chapter 4. System Con�guring

4.5. Boot-up Scripts

Add something like the following lines to boot-up scripts (/etc/rc.local or

/etc/rc2.d/S99local or similar):

if [-r /etc/zmailer.conf]; then

. /etc/zmailer.conf

if [${MAILSERVER-NONE} = NONE -a

-x $MAILBIN/zmailer]; then

$MAILBIN/zmailer bootclean

$MAILBIN/zmailer && (echo -n ' zmailer') >/dev/console

fi

fi

For SysV-init environments, see source-tree �le: utils/zmailer.init.sh. You may want to

comment out startup of the Sendmail daemon, if you have it to begin with.

4.6. Checking the Log Files

Start ZMailer:

$MAILBIN/zmailer

Keep an eye on the log �les ($LOGDIR/router, $LOGDIR/scheduler), the

$POSTOFFICE/postman/ directory for malformed message �les, and $POSTOFFICE/deferred/ in

case of resource problems.

4.7. Crontab

See Figure 4-7 for three crontab entires for the root to run. Those are:

1. This will �resubmit� messages that have been deferred with no useful processing possible at

time of deferral. Adjust the re-submission interval to suit your environment. Having �les in

�deferred� state is a sign of troubles! Always investigate!

2. This �cleanup� is to regularly clean out the �$POSTOFFICE/public/�, and

�$POSTOFFICE/postman/� directories.

3. The automatic log-�le trimmer/rotater is a good idea to have, but you need to customize it for

your environment. More of that below.

You may want to hard-wire the location of the zmailer script.

Figure 4-7. ZMailer related crontab entries for root user

Two ZMailer related root's CRONTAB entries:

28 0,8,16 * * * . /etc/zmailer.conf ; $MAILBIN/zmailer resubmit

7 4 * * * . /etc/zmailer.conf ; $MAILBIN/zmailer cleanup

31

Chapter 4. System Con�guring

FIXME!FIXME!

This third one will not per default be installed into your system

0 0 * * * . /etc/zmailer.conf ; $MAILBIN/rotate-logs.sh

4.8. Trim-down of Logging

Once satis�ed that things appear to work, you may want to trim down logging: there are four kinds

of logging to deal with:

� Router logs:

Usually kept in $LOGDIR/router. This is the stdout and stderr output of the router daemon. If

you wish to turn it off, see $MAILSHARE/cf/standard.cf for routine dribble()}, and especially

its invocations! Alternatively use �-L /dev/null� to divert everything to the �dev null.�

� Scheduler logs:

Usually kept in $LOGDIR/scheduler. Same as router. The scheduler prints there only when it

feels bad about something.1

� Syslog Control ZENV variable:

ZENV variable $SYSLOGFLG contains a set of single-character �ags: �S�, �C�, �R�, and/or �T�.

FIXME! FIXME! Explain Smtpserver/sCheduler/Router/Transport agents!

� General Mail Logs:

Usually kept in syslog �les, depending on how you have con�gured the syslog utility

(/etc/syslog.conf). All ZMailer programs log using the LOG_MAIL facility code for normal

messages. You can deal with this speci�cally in your syslog con�guration �le on systems with a

4.3bsd-based syslog. The following re�ects the recommended con�guration on SunOS 4.0:

mail.crit /var/log/syslog

mail.debug /var/log/mail/mail.syslog

For pre-4.3bsd-based syslogs, you may want the syslog log �le to be just for important messages

(e.g. LOG_NOTICE and higher priority), and have a separate �le for informational messages

(LOG_DEBUG and up).

� By default, the postmaster will not receive a copy of all bounced mail; this can be turned on

selectively by simply editing the various canned forms used to create the error messages. These

forms are located in the FORMSDIR (proto/forms in the distribution, or $MAILSHARE/forms

when installed). You should review these in any case to make sure the text is appropriate for your

site.

Notes

1. At least this is the theory, practice may be different, though.

32

Chapter 5. Installation to Clients

This section describes the installation at clients.

5.1. Required Files

The following �les/programs are needed on clients:

$MAILSHARE/zmailer.conf

The $MAILSERVER variable may be set to the mail server host's name. This is not required as

mailq will usually be able to discover this by itself.

/usr/lib/sendmail

to submit mail

mailq

should be installed in the site's local bin so people can query the mail server. (Remember to

update /etc/services)

$POSTOFFICE/

This directory from the server should be mounted and writable.

5.2. Mounting $MAILBOXes and/or $POSTOFFICE/

Hierarchies via NFS

This is mostly for client machines, but the NFS may plaque you also at servers.

If you for some obscure reason are mounting $MAILBOXes and/or $POSTOFFICE hierarchies via NFS,

do it with options to disable various attribute caches:

actimeo=0

alias: noac

The best advice is to NOT to mount anything over NFS, but some people can't be persuaded. . .

Lots of things are done where �le attributes play important role, and they are extremely important to

be in sync! (Sure, the �noac� slows down the system, but avoids errors caused by bad attribute

caches.)

If you are mounting people's home directories (~/.forward et. al.) via NFS, consider the same rule!

Often if the mail folder directory is shared, also one of following (depending upon the system):

/usr/mail

/usr/spool/mail

/var/mail

/var/spool/mail

33

Chapter 5. Installation to Clients

34

Chapter 6. ./configure options

con�gure options of ZMailer package, per version 2.99.55.

The con�gure script has three kinds of parameters for it:

� (optional) environment variables for CC="..." et.al.

� ZENV data pulled in from $ZCONFIG �le (if it exists)

� various --with-* et.al. options

6.1. Used environment variables

User environment variables

ZCONFIG="/�le/path"

Using this is alternate for using �--with-zconfig=../� option. Not needed if the

--prefix= derived $MAILSHARE/zmailer.conf is used.

CC="command"

CFLAGS="options"

Obvious ones, compiler, and possible �-g -O� �ags. . .

CPPDEP="command"

Not normally needed � builds dependencies

INEWSBIN=/�le/path

If you want to pre-de�ne where your �inews� program is � for possible use of �usenet�

channel.

Recycled ZENV variables (from $ZCONFIG �le):

For these see SiteConfig(.in) file

ZCONFIG=

MAILBOX=

POSTOFFICE=

MAILSHARE=

MAILVAR=

MAILBIN=

LOGDIR=

NNTPSERVER=

SCHEDULEROPTIONS=

ROUTEROPTIONS=

SMTPOPTIONS=

LOGDIR=

SENDMAILPATH=

RMAILPATH=

SELFADDRESSES=

35

Chapter 6. ./configure options

6.2. Options for various facilities

Options for various facilities

--prefix=/DIR/PATH

The only really mandatory option, gives actually defaults for ZENV variables: $MAILSHARE,

$MAILVAR, $MAILBIN.

--with-gcc

Compile with GCC even when you have �cc� around.

--with-zconfig=/FILE/PATH

Where the run-time zmailer.conf �le is located at (and with what name). This is the only

hard-coded info within libraries and thus programs using them. Everything else is run-time

relocatable by means of using �variables� listed in this �le.

Default: $MAILSHARE/zmailer.conf

Lots of ZCONFIG environment variables are pre-set from values present in pre-existing �le.

When environment variable ZCONFIG is set and exported to the ./con�gure script, use of

�--with-zconfig=no� will set the location of the �le, but prevents pre-load of various values

from it to the auto-con�guration environment.

--with-zconfig-noload

Without this option the con�guration will load ZENV variable values from possibly existing

ZCONFIG �le.

Default: values will be preloaded without this option.

--with-mailbox=/DIR/PATH

Overrides system-dependent location of the user mail-boxes. Defaults are looked up thru list of

directories:

/var/mail

/var/spool/mail

/usr/mail

/usr/spool/mail

First found directory will be the default � or then system yields /usr/spool/mail.

--with-postoffice=/DIR/PATH

Overrides system-dependent location of the �$POSTOFFICE� directory under which system

stores queued email. Will try directories /{usr,var}/spool/postoffice/ to see, if

previously installed directory tree exists. Default will be /var/spool/postoffice/ in case

there is no previously created postof�ce directory.

--with-mailshare=/DIR/PATH

--with-mailvar=/DIR/PATH

--with-mailbin=/DIR/PATH

These are overrides for values derived from --prefix=/DIR option, or possibly pre-loaded

from ZCONFIG �le.

MAILSHARE = "$PREFIX", MAILVAR = "$PREFIX", but MAILBIN = "$PREFIX/bin".

36

Chapter 6. ./configure options

--with-logdir=/DIR/PATH

Explicit value to replace $LOGDIR ZENV value and/or to override default value of:

/var/log/mail/

--with-nntpserver=HOST

If you want to use �usenet� channel, you need to name NNTP server into which you feed news

with NNTP.

--with-sendmailpath=/FILE/PATH

Overrides for default location(s) of sendmail program. ZENV variable $SENDMAILPATH can be

overridden with this.

--with-rmailpath=/FILE/PATH

Overrides for default location(s) of rmail program. ZENV variable $RMAILPATH can be

overridden with this.

--with-selfaddresses="NAME,NAME"

Obsolete option regarding providing into in ZENV variable to yield system internal names

auto-magically for the SMTP transport channel uses, and also for the router to see, if

destination IP address is local at the system.

Usage of this option may become necessary at load-balance clusters, but even then, setting the

value to the ZCONFIG �le is easier than pre-con�guring them.

--with-system-malloc

Use system malloc() library, don't compile own: Alternate for using:

--with-libmalloc=system This is default.

--with-libmalloc=LIBNAME

Where �LIBNAME� is one of:

system

System malloc() as is.

malloc

Bundled "libmalloc" without debugging things.

malloc_d

Bundled "libmalloc" with debugging things.

--with-yp

Want to use YP, and has it at default locations

--with-yp-lib='-L... -lyp'

If needed to de�ne linking-time options to �nd the YP-library.

37

Chapter 6. ./configure options

--with-ldap-prefix=DIRPREFIX

If UMich/NetScape LDAP are available thru DIRPREFIX/include/ and DIRPREFIX/lib/

locations, this is a short-hand to �nd the interface � with �les in the system primary include

and lib locations, �/usr� is a special value which will be ignored. There is no default value for

DIRPREFIX.

--with-ldap-include-dir=/DIR/PATH

Special over-rider for compilation include directory of LDAP

--with-ldap-library-dir=/DIR/PATH

Special over-rider for linkage library directory of LDAP

--disable-pam

Disable PAM(3) facility from becoming auto-con�gured even when its API headers and

libraries are present.

--without-fsync

At systems where the local �le-system is log-based/journaling, doing fsync() is wasteful. This

disables fsync() in cases where it is not needed. (In others it may boost your system

performance by about 20% � with dangers. . . On the other hand, once a system disk(?) fault

which hang mailer at spool directory access did cause severe damage all over, and probably use

of this option would not have made any difference; fsck was mighty unhappy.)

--with-bundled-libresolv

If your system is not very modern, you may consider using this option to compile in a resolver

from bind-4.9.4-REL. On the other hand, if your system is modern, it may have even newer

resolver in it. At such time, don't use this!

--with-ipv6

Use IPv6 at things where it is supported. This is often highly experimental, although many

subsystems in ZMailer are built with getnameinfo() et.al. interfaces, which works both on

IPv4 and IPv6.

--with-ipv6-replacement-libc

If the system needs more support for user-space IPv6 things, this generates those.

--without-maillock

Don't use maillock(3) even if system has it. (Solaris maillock(3) is ok, some early Linux

versions weren't. . .)

--without-rfc822-tabs

Some systems dislike getting RFC-822 headers with form of:

"Headername: <TAB> value"

With this option, no TABs are used and instead �ordinary� space character is used.

In real life, this feature is superseded by the router to always TABifying all headers, and the

transport-agent header write-out to untabifying them, if ZENV variable RFC822TABS= has

value �0�.

38

Chapter 6. ./configure options

--with-tcp-wrappers

--with-tcp-wrappers=/DIR/PATH

Optional =/DIR/PATH value gives directory where there are tcpd.h and libwrap.a �les.

Without value this option looks for several common locations for those �les, and if �nds them,

yields compile and linking hooks,

--with-ta-mmap

On some systems with good mmap(2) with �MAP_FILE|MAP_SHARED,� and well behaving

munmap() it does make sense to replace read()/write() thru a �le-descriptor to the �le with

mmap() � however that requires munmap() not to scrub away in-mapped blocks any more

actively, than the buffer-cache works at read()/write() blocks.

This was default for a while, however most systems don't have really well-behaved munmap()s

:-/ (Perhaps IBM AIX is the only exception ?)

--with-mboxquotacheck

Set 'CHECK_MB_SIZE' #de�ne for mailbox.c compilation, and expect checkmbsize()

function to be found via --with-generic-lib= referred library.

--with-privateauth"

Use �private/� sub-directory in a part of smtpserver program compilation.

--with-privatembox"

Use �private/� sub-directory in a part of mailbox program compilation.

--with-getpwnam-library="-L... -l..."

Certain sites have expressed wishes to use their own libraries to replace the standard

getpwnam() (and possibly getpwuid()) routines. These are used in router, scheduler,

mailbox, hold, and vacation programs.

These programs use getpwnam() libary call to look up various customer user-names to

whatever the system needs them for.

For ZMailer needs the library must support user-ids:

� root

� daemon, or daemons

� nobody

and whatever others your local system magic needs.

--with-generic-include="-I/..."

This parameter allows ubiquitous �-I/...� options to be used in all program compilations

throughout the package.

--with-generic-library="-L/..."

This parameter allows ubiquitous �-L/...� options to be used in all program linkages

throughout the package.

39

Chapter 6. ./configure options

--with-openssl

--with-openssl-prefix="/dir/prefix"

--with-openssl-include="/dir/incl"

--with-openssl-lib="/dir/lib"

Search for, and use OpenSSL, if it can be found. (For optional in and outbound SMTP traf�c

encryption on the Internet.)

--with-whoson

--with-whoson="/dir/prefix"

This does explicit integration with �whoson� server; see the �whoson-*.tar.gz� �le in the

�contrib/� sub-directory.

6.3. Runtime ZENV Variables

Runtime ZENV Variables

ZCONFIG=

ZCONFIG is the pathname of the con�guration �le specifying all the other host-dependent

information needed by ZMailer programs. This �le is created from the Con�g �le in the

distribution (the �le you are reading right now), and contains variable assignments in an

sh-compatible format.

MAILBIN=

MAILBIN is the directory hierarchy containing all ZMailer binaries. Usually /usr/lib/mail/bin

or /local/lib/mail.

MAILSHARE=

MAILSHARE is the directory hierarchy containing site-wide con�guration �les and databases.

Usually /usr/lib/mail or /local/share/mail.

MAILVAR=

MAILVAR is the directory that will contain machine-speci�c con�guration �les and databases.

Usually /usr/lib/mail or /var/db/mail or /local/share/mail.

MAILBOX=

MAILBOX is the directory containing all the user mailboxes. This is defaulted inside the

mailbox.c program (currently /var/mail) and may be overridden here. Usually /usr/spool/mail or

/var/mail.

POSTOFFICE=

POSTOFFICE is the directory hierarchy used to manipulate message �les, where runtime

activity takes places. Usually /usr/spool/postof�ce or /var/spool/postof�ce.

ROUTERDIRS=

Multiple LOWER priorities on message routing can be de�ned by creating

$POSTOFFICE/<component-of-$ROUTERDIRS> -directories. Routers process �rst

$POSTOFFICE/router/ -directory, and once it is empty, �les from subsequent dirs. See mail(3)

mail_priority These can be only under the $POSTOFFICE.

40

Chapter 6. ./configure options

ROUTERDIRS=router1:router2:router3:router4

ROUTERDIRHASH=

When de�ned, ROUTERDIRHASH submits messages immediately into the 'A' thru 'Z'

subdirectory of whatever directory (e.g. see ROUTERDIRS). IF NO SUCH "hash subdirs"

EXIST, MESSAGE SUBMISSION WILL FAIL! (The value must be "1" for this to take effect!)

LOGDIR=

LOGDIR is the directory where log �les will appear. Usually /usr/spool/log or /var/log.

MANDIR=

MANDIR is the top of the manual directory hierarchy where manual pages for the ZMailer

programs are installed. Usually /usr/man or /local/man.

LIBRARYDIR=

LIBRARYDIR is the place for storing libzmailer.a, which can be used to # create programs

which use Zmailer's zmailer(3) (aka: mail(3)) -library. LIBRARYDIR= @libdir@

INCLUDEDIR=

INCLUDEDIR is the place for storing zmailer.h -- a copy of include/mail.h # and it is used in

conjunction with the libzmailer.a .. INCLUDEDIR= @includedir@

SMTPOPTIONS=

SMTPOPTIONS are command line options given to the smtpserver when started # from the

zmailer shell script. The intent is that if you want non-default # address veri�cation options they

can be speci�ed here. The default # value is "-sve". This is also used, when invoking

�sendmail� with # "-bs" option. #SMTPOPTIONS= "-l ${LOGDIR}/smtpserver"

SMTPOPTIONS= @SMTPOPTIONS@

ALLOWSOURCEROUTE=

ALLOWSOURCEROUTE (when present) stops the system from ignoring # the old

RFC821/822 source routes of type: @a,@b:c@d; By "ignoring" # we mean here that system

chops away "@a,@b:" and uses only: c@d # This is done at all input portals; smtpserver, and at

sendmail/rmail. #ALLOWSOURCEROUTE=

SCHEDULEROPTIONS=

SCHEDULEROPTIONS are command line options given to the scheduler when # started

from the zmailer shell script. The intent is that if you want # non-default logging options, the

can be speci�ed here. The default # value is "" # #SCHEDULEROPTIONS= "-l

${LOGDIR}/scheduler.per�og -S -H" SCHEDULEROPTIONS= @SCHEDULEROPTIONS@

SCHEDULERDIRHASH=

The SCHEDULERDIRHASH is magic thing to tell to the router that it # should move

resulting �les directly into hash subdir(s) of the # scheduler subsystem, and not only to the

main-level. # Existence of this variable also overrides -H option(s) to # the scheduler. Value is

the number of -H options. # If these hash subdirectories don't exist, system failure happens!

SCHEDULERDIRHASH=1

41

Chapter 6. ./configure options

SCHEDULERNOTIFY=

The SCHEDULERNOTIFY de�nes, where is a socket at which the scheduler # listens for

PF_UNIX/SOCK_DGRAM messages telling paths to new jobs. # The router(s) inform the

scheduler of new jobs. SCHEDULERNOTIFY=@POSTOFFICE@/.scheduler.notify

ROUTERNOTIFY=

The ROUTERNOTIFY de�nes, where is a socket at which the router # listens for

PF_UNIX/SOCK_DGRAM messages telling paths to new jobs. # The injection library informs

the router queuing subsystem of new jobs.

ROUTERNOTIFY=@POSTOFFICE@/.router.notify

ROUTEROPTIONS=

ROUTEROPTIONS are command line options given to the router when started # from the

zmailer shell script. The default values are "-dkn 4" #ROUTEROPTIONS= "-dkn 4"

ROUTEROPTIONS= @ROUTEROPTIONS@

MAILSERVER=

MAILSERVER is the hostname of the remote machine where the postof�ce is # located. This

value is only needed in an environment with distributed �le # systems, and if it exists will be

used by the mail queue querying program # as the default name of the host to query. It is a way

of overriding the # algorithm used by mailq in an NFS environment, or when you are running a

different kind of DFS. Usually unde�ned or a hostname. #MAILSERVER= neat.cs

PUNTHOST=

PUNTHOST is where mail that is supposed to go to a local address, but # no such address

exists, is punted to. #PUNTHOST= relay.cs

FORCEPUNT=

FORCEPUNT is for cases when the local machine under no circumstances # is to store any

email locally, but send all such to this given address # (local host is a member on a "cluster"

whose message store is at some # other cluster server, and said node handles "local" delivery for

all # cluster members... *including* running pipes..) #FORCEPUNT= mailhost

SMARTHOST=

SMARTHOST is where mail that cannot be resolved or routed is punted to. # There used to

be a variable for this, now a better way is to use 'routes' # database at which you put line: .

smtp!smart.host.name # (That is: dot, white-space(s), "smtp!smart.host.name")

NOBODY=

NOBODY is the unprivileged UID value. # This is absolutely necessary if setuid() will fail on

your "nobody" account # uid (if it is -2, for example). Make sure that whatever value you give #

here will work with setuid(). Values between 1 and 29999 will usually work. # BE CAREFULL

WITH THIS! THE SYSTEM RELIES ON IT VERY MUCH IN DEED! # (On SunOS 4.1.x,

the value of "-2" works the best, on Solaris the default # for nobody is 60001! If your system

has "nobody" "account", use here the # name instead of number -- it should (usually) work) # --

Use a mapping via /etc/passwd, this is most generic.. NOBODY=nobody

LOGLEVEL=

LOGLEVEL may be set to restrict the log output of the router to entries # whose tags are

found in the speci�ed string value. The currently known # tags are: # address: deferred: �le:

42

Chapter 6. ./configure options

header_defer: info: recipient: #LOGLEVEL= "�le: recipient:" LOGLEVEL= "deferred: �le:

header_defer:"

NNTPSERVER=

Builtin USENET channel uses NNTPSERVER variable (depending upon your # inews ..) to

send the artickle to.. NNTPSERVER= @NNTPSERVER@

INEWSBIN=

Builtin USENET channel uses NNTPSERVER variable (depending upon your # inews ..) to

send the artickle to.. INEWSBIN= @INEWS@

SENDMAILPATH=

Where the sendmail (compability one) shall be located ? SENDMAILPATH=

@SENDMAILPATH@

RMAILPATH=

Where is the rmail to be located at ? RMAILPATH= @RMAILPATH@

BLOCKLOCKS=

MAILBOX locking scheme -- no con�guration option (yet) # See man-page of mailbox.8 for

details; the order of key-chars # is meaningfull: # `.' Dotlock scheme for mailboxes at

$MAILBOX/ directory # `F' �ock() locking of �les (and perhaps mailboxes) # `L' lockf()

locking of �les (and perhaps mailboxes) # `:' Separates the two parts of the parameter; left part

is for the mailbox locking, and right part is for # all other kinds of �les. # # We use

compiled-in defaults at the mailbox program! # Following examples are for �ock(), and lockf()

systems with their # respective defaults. (Systems capable to use both will use lockf())

#MBOXLOCKS=".F:F" #MBOXLOCKS=".L:L"

SELFADDRESSES=

The SELFADDRESSES is a comma separated list of IP address literals # listing all of our

acceptable IP addresses (Comma because IPv6 uses # colon for short-hand notation..): # For

usual (IPv4) universe, no addresses are needed listing, however # for IPv6 it may be necessary -

likewise if you want to use cluster-mode, # you may want to list all *cluster* addresses here -

nodes know only # their local ones, after all.. (See: doc/guides/etrn-cluster)

#SELFADDRESSES=[1.2.3.4],[2.3.4.5],[ipv6.::1.2.3.4]

SELFADDRESSES=@SELFADDRESSES@

DBTYPE=

What kind of DB type we prefer to use ? We can support several, # after all...

btree/ndbm/gdbm ... (DBEXT: pag/db/dat) DBTYPE=@DBTYPE@

DBEXT=

What kind of DB type we prefer to use ? We can support several, # after all...

btree/ndbm/gdbm ... (DBEXT: pag/db/dat) DBEXT=@DBEXT@

DBEXTtest=

What kind of DB type we prefer to use ? We can support several, # after all...

btree/ndbm/gdbm ... (DBEXT: pag/db/dat) DBEXTtest=@DBEXTtest@

43

Chapter 6. ./configure options

DEFCHARSET=

The characterset to be used as a default when turning 8-bit containing # headers to MIME-2

headers -- and what to say at the default generated # "Content-Type: text/plain; charset=XXXX"

-header in case the original # message was not of MIME, and still had 8-bit chars...

DEFCHARSET=ISO-8859-1

RFC822TABS=

We want those nice tabs between the header �eld name and value # The task of generating

TABs or SPACEs is at TA *writeheaders(). # Value '0' here yields expansion of possibly

existing header resident # line-start TABs. There is no mechanism to turn line-start SPACEs # to

TABs with any other value stored here. RFC822TABS=@RFC822TABS@

MAX_NR, MAX_NT, MAX_LOAD=

If the following limitations are exceeded then zmailcheck # will sent an alert. # Limit on the

Router Queue MAX_NR=1000 # Limit on Transport Queue MAX_NT=1000 # Load times 100

MAX_LOAD=300

SYSLOGFLG=

SYSLOGFLG tells which systems use syslog to log things: # Set of chars which are as

follows: # S smtpserver and @SENDMAILPATH@ # R router # T transport agents # C

scheduler completion of a message # #SYSLOGFLG=SRT SYSLOGFLG=RT

TRUSTEDUSER=

Per default, ZMailer uses �daemon� userid when it wants to # operate in �runastrusteduser()�

mode. Finding that userid # (or rather its numeric uid) can be a bit dif�cult, and if it # *fails*,

apparently uid 65535 will be used. # #TRUSTEDUSER=daemon

ORGDOMAIN=

Use ORGDOMAIN in ZENV if the system can't generate # MIME multipart boundary string

contained host/domain ids # automagically... # #ORGDOMAIN=my.local.domain

ROUTEUSER_IN_ABNORMAL_UNIX=

Depending, are you running strange private customer account databases # hooked (only) into

'mailbox', or not, make sure following is non-empty # if you *are* using private databases, as

then ZMailer's router won't # claim wronly userid to be nonexistent.. These shunted tests look

for # HOMEDIRECTORY, which might be nonexistent thing at such funny systems... # An

EMPTY string means "this is NORMAL unix": # # (A "bug" is that this isn't automatically

substituted, but non-void # content gives behaviour that has been around for quite a while...) #

ROUTEUSER_IN_ABNORMAL_UNIX="@ROUTEUSER_IN_ABNORMAL_UNIX@"

LISTSERV=

Some sites (well, one FUNET site), has LISTSERV, this is for # con�guring that subpart of

the aliases.cf scripts: #LISTSERV=/v/net/listserv.funet.�

44

Chapter 7. Verifying the System

FIXME! FIXME! TO BE WRITTEN !

45

Chapter 7. Verifying the System

46

Chapter 8. Installing Whoson Service

FIXME! FIXME! TO BE WRITTEN !

The need for this, and other similar "POP-before-SMTP" approaches has pretty much been obsoleted

by development of SMTP AUTHENTICATION, and doing it in particular under TLS wrappers on

SUBMISSION port.

47

Chapter 8. Installing Whoson Service

48

III. Administation
This section covers subsystem management issues, including usage and con�guration examples,

basic and somewhat speci�c explanations of how pre-existing scripts have been done.

The Figure 14 repeats earlier picture showing central components of the system.

Figure 14. ZMailer's processes.

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

The things in the picture are pointed further here, along with their related auxiliary programs, etc:

smtpserver

Administration of the smtpserver is described at Chapter 12, and detailed Reference is at

Chapter 17.

sendmail

The sendmail client compatibility functions program is described at Reference Chapter 18.

router

Administration of the router is at Chapter 13, and Reference is at Chapter 21.

Auxiliary programs used to support the router include:

zmailer newdb

This script has two behaviours, if $MAILVAR/db/dbases.conf �le can be found, utility

script newdbprocessor is run. If not, a set of pre-determined individual database

regeneration actions is done.

newdb

A perl wrapper for actual internal makedb utility taking care of things like correct

sequence of �le movements after successfull generation of new binary database �le(s).

newaliases

Classical aliases database regenerator, subset of zmailer newdb.

newfqdnaliases

Behaves like the newaliases, but processes different database: fqdnaliases. Subset of

zmailer newdb.

scheduler

Administration of the scheduler is at Chapter 14, and Reference is at Chapter 22.

Auxiliary programs used to support the scheduler include:

mailq

Utility for querying scheduler's view of the universe.

mailbox

Program driven by the scheduler to do (usually) delivery to local mailboxes, running

pipes, and writing to �les.

smtp

Program to do delivery to external systems via SMTP protocol (with many supported

extensions).

hold

Handler of �hold�-channel deliveries.

sm

There are lots of programs intended to be run under sendmail's M-entry (Mailer-entry)

lines. This program supplies that interface layer to an extent which is meaningfull in

ZMailer sense.

errormail

Handler of �error�-channel deliveries.

expirer

This is actually driven by the administrator via manual-expirer wrapper script.

Chapter 9. DNS and ZMailer

The cornerstone of everything in busy Internet email routing is a properly working DNS server, and

a modern resolver library. If you use the BIND nameserver, you should be using a recent version. As

of this writing (January 2006), BIND server developers recommend version 9. They also strongly

recommend, that you do not let zone data masters (either masters, or slave copies) to do any

recursive resolving, and do recursive resolvings with servers that do not have locally mastered data.

You can get improved DNS performance by installing local named(8), which does cache replies,

including negative replies.

For the �le /etc/resolv.conf:

domain your.domain

nameserver 127.0.0.1

nameserver (some other server)

For the local nameserver daemon (named(8)) you should have at least following type of

con�guration:

For 4.* series: /etc/named.boot

forwarders 10.12.34.56 10.45.67.89

options forward-only

For 8.* series: /etc/named.conf

options {

forward only;

forwarders {

10.12.34.56;

10.45.67.89;

};

};

which means that all the queries are attempted to be resolved by the servers at IP addresses

10.12.34.56 and 10.45.67.89, and both the local server, and remote servers will cache DNS

responses.

For Solaris, Linux, and some other environments you propably have �le /etc/nsswitch.conf.

There the interesting line is one referring with �hosts:� tag. In most cases the default setup assumes

you will use e.g. NIS(+) in the system overriding DNS and/or local �les. In general that is quite bad

thing to do � especially for DNS intensive application, like mailers... Suggested value:

hosts: files dns

At DEC Tru64 there is another �le with same purpose as nsswitch.conf, it is: /etc/svc.conf.

At Solaris 2.6 (and after?) there is also a �nscd� daemon (name service cache daemon), which has

appeared at times to harm DNS lookup intensive systems. At its con�guration �le

/etc/nscd.conf:

enable-cache hosts no

Same trouble entity appears also at Linuxes with glibc 2.*. That thing appears (at both systems) to

turn temporary lookup failures to permanent kind of errors. E.g. confuse return codes!

51

Chapter 9. DNS and ZMailer

52

Chapter 10. Security Issues

The intention of the security mechanisms is not to prevent address faking, but to control the

privileges which are used to execute pipes, and accessing �les (read, and write).

In addition of doing strict privilege control on who can do what, ZMailer has a concept of trust,

which shows as a group of accounts who can claim wildly �fradulent� data in their headers.

The trusted accounts are those listed in the ZMailer group or the �trusted� variable in the system

con�guration (router.cf) �le.

Of course when one uses SMTP protocol to inject email, it is extremely easy to �fake� any source

and destination envelope and visible addresses.

Having local-parts that allow delivery to arbitrary �les, or which can trigger execution of arbitrary

programs, can clearly lead to a huge security problem. sendmail does address this problem, but in a

restrictive, and unintuitive manner. This aspect of ZMailer security has been designed to allow the

privileges expected by common sense.

The responsibility for implementing this kind of security is split between the router, and the

transport agent that delivers a message to an address. Since it is the Transport Agent that must

enforce the security, it needs some information to guide it. Speci�cally, for each address it delivers

to, some information about the �trustworthiness� of that address is necessary so that the transport

agent can determine which privileges it can assume when delivering for that destination. This

information is determined by the router, and passed to the transport agent in the message control

�le. The speci�c measure of trustworthiness chosen by ZMailer, is simply a numeric user id (uid)

value representing the source of the address.

When a message comes into the mailer from an external source, the destination addresses should

obviously have no privileges on the local host (when mailing to a �le or a program). Similarly,

common sense would indicate that locally originated mail should have the same privileges as the

originator. Based on an initial user id assigned from such considerations, the privilege attached to

each address is modi�ed by the attributes of the various alias �les that contain expansions of it. The

algorithm to determine the appropriate privilege is to use the user id of the owner of the alias �le if

and only if that �le is not group or world writable, and the directory containing the �le is owned by

the same user and is likewise neither group nor world writable. If any of these conditions do not

hold, an unprivileged user id will be assigned as the privilege level of the address.

It is entirely up to the transport agent whether it will honour the privilege assignment of an address,

and indeed in many cases it might not make sense (for example for outbound mail). However, it is

strongly recommended that appropriate measures are taken when a transport agent has no control

over some action that may affect local �les, security, or resources.

The described algorithm is far from perfect. The obvious dangers are:

� The grandparent directories, to the Nth degree, are ignored, and may not be secure. In that case all

security is lost.

� There is a window of vulnerability between when the permissions are checked, and the delivery is

actually made. This is the best argument for embedding the entire local-aliasing into the

local-delivery agent program.

There is also another kind of security that must be addressed. That is the mechanism by which the

router is told about the origin of a message. This is something that must be possible for the message

receiving programs (/bin/rmail and the SMTP server are examples of these) to specify to ZMailer.

53

Chapter 10. Security Issues

The router knows of a list of trusted accounts on the system. If a message �le is owned by one of

these user id's, any sender speci�cation within the message �le will be believed by ZMailer. If the

message �le is not owned by such a trusted account, the router will cross-check the message �le

owner with any stated �From:� or �Sender:� address in the message header, or any origin speci�ed in

the envelope. If a discrepancy is discovered, appropriate action will be taken. This means that there

is no way to forge the internal origin of a message without access to a trusted account.

54

Chapter 11. The Queue

Normal processing within ZMailer goes via directories described at Figure 11-1. A message may get

sidelined or otherwise linked into other directories for several possible reasons.

Important: A �lesystem without following three properties is not suitable for ZMailer's

$POSTOFFICE/:

� Files must succeed to be link(2):ed in between directories within the �lesystem without

copying them.

� The �les must have i-node numbers available via fstat(2) calls, and those numbers must be

uniquely representable with 31 bits wide integers.

� The �le i-node numbers must not change with rename(2) or link(2) calls applied to them.

Most of the $POSTOFFICE/ directory must be a single mounted �lesystem within which �les can be

link(2)ed from one directory to another, as well as moved around with rename(2)

However, the $POSTOFFICE/transport/ subdirectory can be separate �lesystem mounted under

$POSTOFFICE/! Such arrangement can (under some situations) result in additional system

performance, as transport agents need to modify (write locks) �les in the

$POSTOFFICE/transport/ subdirectory, while they only read (without locks) �les in

$POSTOFFICE/queue/ subdirectory.

Adding system reliability in form of having directory data committed to disk at the time of the

directory modifying operations returning with success is a nice bonus, although in normal

UFS-like cases that taxes system performance heavily.

E.g. running fast-and-loose with async metadata updates in Linux EXT2 �lesystem gives you

performance, but in case the system crashes, your postof�ce directory may be in shambles, and

important email may have been lost.

How exactly you can combat the problem is yours to choose. Most �lesystems for UNIX have lots

of different options at mount-time, and also by-directory attributes can be set to control these

things. Check yours after your decide on what kind of data loss threat you can tolerate at the

expence of what speed reduction. (E.g. 300+ day straight uptime with power surges during a

thunderstorm at the end of it toasting your machine along with its disks and �lesystems, but

trouble-free running until then ?)

55

Chapter 11. The Queue

Figure 11-1. Directories that ZMailer uses for message processing.

$POSTOFFICE/router/

$POSTOFFICE/queue/

$POSTOFFICE/transport/

Submit by rename() into

the message, it rename()s
the file into the "queue"−dir,
and creates control file into
the "transport" directory.

new files in its directory,
it starts scheduling and
submission of them to the
delivery.

12345−3

12345−3

12345−3
When the Scheduler sees

When Router finishes with

Router’s directory

12345

$POSTOFFICE/public/

12345 (/usr/lib/sendmail)
User creates mail

$POSTOFFICE/input/
Possible pre−router spool for e.g.
some email virus scanner

56

Chapter 11. The Queue

There are multiple queues in ZMailer. Messages exist in in one of �ve locations:

� Submission temporary directory ($POSTOFFICE/public/)

� Freezer directory ($POSTOFFICE/freezer/)

� Router directory ($POSTOFFICE/router/)

� Deferred directory ($POSTOFFICE/deferred/)

� Scheduler directories ($POSTOFFICE/transport/, $POSTOFFICE/queue/)

And sometimes is also copied into the:

� Postmaster analysis area ($POSTOFFICE/postman/)

11.1. Message Submission Areas

In few places inside of ZMailer (in parts of router, and more so in parts of scheduler) the system

expects the �lenames to be decimal encodings of integers of 31 bits (maybe 63 bits at systems with

suitably large 'long'), and those integers (modulo something) are used as keys in several internal

database lookups.

The numeric values used in �lenames must be unique for the entire lifetime of the spool �les.

Message submission is done by writing a temporary �le into the directory ($POSTOFFICE/public/),

the actual format of the submitted message is described in Appendix E.

When the temporary �le is completely written, �ushed to disk, and closed, it is then renamed into

one of the router input directories, usually into $POSTOFFICE/router/ with a name that is a

decimal representation of the spool-�le i-node number. This is a way to ensure that the name of the

�le in the $POSTOFFICE/router/ directory is unique.

The message may also be renamed into alternate router directories, which give lower priorities on

which messages to process when.

Sometimes, especially smtpserver built �les may be moved into alternate directories. The

smtpserver �ETRN� command has two implementations, original one is by moving the built special

�le to the directory $POSTOFFICE/transport/ without going through the router. The smtpserver

may also move newly arrived �les into the $POSTOFFICE/freezer/ directory.

11.2. Router Behaviour on Queues

FIXME:

This description is from era before the router got

�daemonized� in a sense of having separate instance

of queue processor (and it also handles logging/log

rotation) and a worker-farm of routing work processes.

FIXME: The system can have multiple router processes running in parallel and competeting on

input �les. Multiple processes may make sense when there are multiple processors in the system

57

Chapter 11. The Queue

allowing running them in parallel, but also perhaps for handling cases where one process is handling

routing of some large list, and other (hopefully) will get less costly jobs.

The router processes have a few different behaviours when they go over their input directories.

First of all, if there are ROUTERDIRS entries, those are scanned for processing after the primary

$POSTOFFICE/router/ directory is found empty.

Within each directory, the router will sort �les at �rst into mod-time order, and then process the

oldest message �rst. (Unless the router has been started with the �-s� option.)

The router acquires a lock on the message (spool �le) by means of renaming the �le from its

previous name to a name created with formatting statement:

sprintf(buf, "%ld-%d", (long)filestat.st_ino, (int)getpid());

Once the router has been able to acquire a new name for the �le, it starts off by creating a temporary

�le of router routing decisions. The �le has a name created with formatting statement:

sprintf(buf, "..%ld-%d", (long)filestat.st_ino, (int)getpid());

Once the processing has completed successfully, the original input �le is moved into the directory

$POSTOFFICE/queue/, and the router produced scheduler work-speci�cation �le is moved to the

$POSTOFFICE/transports/ directory with the same name that the original �le has.

If the routing analysis encountered problems, the message may end up moved into the directory

$POSTOFFICE/deferred/, from which the command zmailer resubmit is needed to return the

messages into processing (The router logs should be consulted for the reason why the message

ended up in the /deferred/ area, especially if the command zmailer resubmit is not able to get

the messages processed successfully and the �les end up back in the /deferred/ area.)

If the original message had errors in its RFC-822 compliance, or some other detail, a copy of the

message may end up in the directory $POSTOFFICE/postman/.

See Postmaster Analysis Area on section Section 11.4.

11.3. Scheduler, and Transport Agents

The scheduler work speci�cation �les are in the directory $POSTOFFICE/transport/, under which

there can be (optionally) one or two levels of subdirectories into which the actual work �les will be

scattered to lessen the sizes of individual directories in which �les reside, and thus to speed up the

system implied directory lookups at the transport agents, when they open �les, (and also in the

scheduler).

When the router has completed message �le processing, it places the resulting �les into the top level

directory of the scheduler; $POSTOFFICE/transport/, and $POSTOFFICE/queue/.

The scheduler (if so con�gured by �-H� option) will move the messages into �hashed

subdirectories,� when it �nds the new work speci�cation �les, and then start processing them.

The transport agents are run with their CWD in directory $POSTOFFICE/transport/, and they

open �les relative to that location. Actual message bodies, when needed, are opened with the path

pre�x �../queue/� to the work speci�cation �le name.

58

Chapter 11. The Queue

Usually it is the transport agent's duty to log different permanent status reports (failures, successes)

into the end of the work-speci�cation �le. Sometimes the scheduler also logs something at the end

of this �le. All such operations are attempted without any sort of explicit locking, instead trusting the

write(2) system call to behave in an atomic manner while writing to the disk �le, and having a single

buffer of data to write.

Once the scheduler has had all message recipient addresses processed by the transport agents, it

will handle possible diagnostics on the message, and �nally it will remove the original spool-�le

from the $POSTOFFICE/queue/, and the work-speci�cation �le from $POSTOFFICE/transport/.

11.4. Postmaster Analysis Area

If the �lename in the $POSTOFFICE/postman/ directory has an underscore in it, the reason for the

copy is soft, that is, the message has been sent through successfully in spite of being copied into the

directory.

If the �lename in that directory does not have an underscrore in it, that �le has not been processed

successfully, and the only copy of the message is now in that directory!

Usually forementioned underscoreless �lenames are double-errors, that is, error messages to error

messages. There is nowhere else to send them.

The indication of error message is, of course, MAIL FROM:<> per RFC 821.

If the smtpserver receives a message with content that the policy �ltering system decides to be

dubious, it can move the message into $POSTOFFICE/freezer/ directory with a bit explanatory

name of type:

sprintf(buf, "%ld.%s", (long)filestat.st_ino, causecodestring);

The �les in the freezer-area are in the input format to the router, and as of this writing, there are no

tools to automatically process them for obvious spams, and leave just those that were falsely

triggered.

59

Chapter 11. The Queue

60

Chapter 12. Smtpserver Administration

Things to place here

- administrative stuff

- runtime command-line parameters (most important of them)

- smtpserver.conf

- PARAM entries (most common/important ones)

- SMTP policy-control

- content-policy interface

The smtpserver is ZMailer's component to receive incoming email via SMTP protocol. Be it thru

TCP channel, or thru Batch-SMTP.

The Figure 12-1 repeats earlier picture showing central components of the system, and where the

smtpserver is in relation to them all.

Figure 12-1. ZMailer's processes; Smtpserver

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

The smtpserver program actually has several operational modes.

� It can operate as a stand-alone internet service socket listener, which forks off childs that do the

actual SMTP-protocol service.

� It can be started from under the control of the inetd(8) server, and it can there ful�ll most of the

the same roles as it does in the stand-alone mode.

� It can even be used to accept Batch-SMTP from incoming �les (UUCP, and BITNET uses, for

example).

61

Chapter 12. Smtpserver Administration

The runtime command-line options are as follows:

smtpserver [-46aignvBV] [-p port] [-l logfile] [-s 'strict'] [-s [ftveR]]

[-L maxloadaver] [-M SMTPmaxsize] [-P postoffice] [-R router]

[-C cfgfile] [-T IPv4/IPv6-address-literal]

The most commonly used command line options are:

smtpserver [-aBivn] [-s ehlo-styles] [-l logfile] [-C cfgpath]

Without any arguments the smtpserver will start as a daemon listening on TCP port 25 (SMTP).

Most important of the options are:

-a

Query IDENT information about the incoming connection. This information (if available at all)

may, or may not tell who is forming a connection.

-B

The session is Batch-SMTP a.k.a. BSMTP type of session. Use of �-i� option is needed, when

feeding the input batch �le.

-i

This is interactive session. I/O is done thru stdin/stdout.

-v

Verbose trace written to stdout for use in conjunktion with �-i�, and �-B�.

-n

This tells that the smtpserver is running under inetd(8), and that the stdin/stdout �le handles

are actually network sockets on which we can do peer identity lookups, for example.

-s ehlo-style

Default value for various checks done at SMTP protocol MAIL FROM, RCPT TO, VRFY, and

EXPN commands. These are overridden with the value from EHLO-patterns, if they are

available (more below)

-s 'strict'

Special value directing the system to be extremely picky about the incoming SMTP protocol �

mainly for protocol compliance testing, usually way too picky for average (sloppy) applications

out there...

-l logfilepath

Filename for the smtpserver input protocol log. This logs about everything, except actual

message data...

62

Chapter 12. Smtpserver Administration

-l 'SYSLOG'

This tells smtpserver that it shall send all incoming smtp protocol transactions via syslog

facility to elsewere. Used syslog parameters are: FACILITY=mail, LEVEL=debug.

This option may be used in addition to the preceding �le logging variant. Double-use of �le

referring variant uses the last de�ned �le, but this doesn't affect �les at all.

-C configfilepath

Full path for the smtpserver con�guration in case the default location can not be used for some

reason.

-M SMTPmaxsize

SMTPmaxsize de�nes the absolute maximum size we accept for incoming email. (Default:

in�nite) (This is a local policy issue.)

-T [IPv4-or-IPv6-address-literal]

An address literal is used in interactive test mode to check how the rules work with given inputs

when the source address of the connection is what is given in headers.

12.1. smtpserver.conf

If the system has �le $MAILSHARE/smtpserver.conf (by default), that �le is read for various

parameters, which can override most of those possibly issued at the command line.

Example con�guration is is in �gure Figure 12-2.

Figure 12-2. Sample smtpserver.conf �le

#PARAM maxsize 10000000 # Same as -M -option

#PARAM max-error-recipients 3 # More than this is propably SPAM!

#PARAM MaxSameIpSource 10 # Max simultaneous connections from

any IP source address

#PARAM ListenQueueSize 10 # listen(2) parameter

#

Enables of some commands:

#PARAM DEBUGcmd

#PARAM EXPNcmd

#PARAM VRFYcmd

#PARAM enable-router # This is a security decission for you.

This is needed for EXPN/VRFY and interactive

processing of MAIL FROM and RCPT TO addresses.

However it also may allow external user entrance

to ZMailer router shell environment with suitably

pervert input, if quotation rules are broken in

the scripts.

PARAM help ---

PARAM help This mail-server is at Yoyodyne Propulsion Inc.

PARAM help Our telephone number is: +1-234-567-8900, and

....

PARAM help ---

The policy database: (NOTE: See 'makedb' for its default suffixes!)

63

Chapter 12. Smtpserver Administration

PARAM policydb $DBTYPE $MAILVAR/db/smtp-policy

External program for received message content analysis:

#PARAM contentfilter $MAILBIN/smtp-contentfilter

....

#

TLSv1/SSLv[23] parameters; all must be used for the system to work!

#

See doc/guides/openssl, or:

http://www.aet.tu-cottbus.de/personen/jaenicke/pfixtls/doc/setup.html

#

#PARAM use-tls

#PARAM tls-CAfile $MAILVAR/db/smtpserver-CAcert.pem

#PARAM tls-cert-file $MAILVAR/db/smtpserver-cert.pem

#PARAM tls-key-file $MAILVAR/db/smtpserver-key.pe

....

#

HELO/EHLO-pattern style-flags

[max loadavg]

#

localhost 999 ftveR

some.host.domain 999 !NO EMAIL ACCEPTED FROM YOUR MACHINE

If the host presents itself as: HELO [1.2.3.4], be lenient to it..

The syntax below is due to these patterns being SH-GLOB patterns,

where brackets are special characters.

\[*\] 999 ve

Per default demant strict syntactic adherence, including fully

qualified addresses for MAIL FROM, and RCPT TO. To be lenient

on that detail, remove the "R" from "veR" string below:

* 999 veR

12.1.1. smtpserver.conf; PARAM keywords

The PARAM keywords and values are:

maxsize nn

Maximum size in the number of bytes of the entire spool message containing both the transport

envelope, and the actual message. That is, if the max-size is too low, and there are a lot of

addresses, the message may entirely become undeliverable..

max-error-recipients nn

In case the message envelope is an error envelope (MAIL FROM:<>), the don't accept more

than this many separate recipient addresses for it. The default value is 3, which should be

enough for most cases. (Some SPAMs claim to be error messages, and then provide a huge

number of recipient addresses...)

64

Chapter 12. Smtpserver Administration

MaxSameIpSource nn

(Effective only on daemon-mode server � not on �-i�, nor �-n� modes.) Sometimes some

systems set up multiple parallel connections to same host (qmail ones especially, not that

ZMailer has entirely clean papers on this - at least up to 2.99.X series), we won't accept more

than this many connections from the same IP source address open in parallel. The default value

for this limit is 10.

ListenQueueSize nn

This relates to newer systems where the listen(2) system call can de�ne higher limits, than

the traditional/original 5. This limit tells how many nascent TCP streams we can have in

SYN_RCVD state before we stop answering to incoming SYN packets requesting opening of a

connection.

There are entirely deliberate denial-of-service attacks based on �ooding to some server many

SYNS on which it can't send replies back (because the target machines don't have network

connectivity, for example), and thus �lling the back-queue of nascent sockets. This can also

happen accidentally, as the connectivity in between the client host, and the server host may have

a black hole into which the SYN-ACK packets disappear, and the client thus will not be able to

get the TCP startup three-way handshake completed.

Most modern systems can have this value upped to thousands to improve systems resiliency

against malicious attacks, and most likely to provide complete immunity against the accidental

�attack� by the failing network routing.

DEBUGcmd

FIXME! WRITEME! #PARAM DEBUGcmd

EXPNcmd

FIXME! WRITEME! #PARAM EXPNcmd

VRFYcmd

FIXME! WRITEME! #PARAM VRFYcmd

enable-router

FIXME! WRITEME! #PARAM enable-router # This is a security decission for you.

help 'string'

This one adds yet another string (no quotes are used) into those that are presented to the client

when it asks for �HELP� in the SMTP session.

PolicyDB dbtype dbpath

This de�nes the database type, and �le path pre�x to the binary database containing policy

processing information. More of this below. Actual binary database �le names are formed by

appending type speci�c suf�xes to the path pre�x. For example NDBM database appends

�.pag� and �.dir�, while BSD-Btree appends only �.db�. (And the latter has only one �le, while

the �rst has two.)

For an operative overview, see Section 12.2, and for deeper details, see Section 17.4.

contentfilter programpath

The content�lter studies the received message at the end of the DATA or BDAT transaction, and

produces syncronous report about should be message be accepted or not. Unlike the PolicyDB,

65

Chapter 12. Smtpserver Administration

this does not (should not) care about validity of envelope source and recipient address validities,

although perhaps it should consider at least the recipients in some cases -- e.g. accept about

anything when the destination is <postmaster>.

For an operative overview, see Section 12.3, and for deeper details, see Section 17.5.

12.1.2. smtpserver.conf; �EHLO-style options�

All lines that are not comments, nor start with uppercase keyword �POLICY� are �EHLO-style

patterns�. This is the oldest form of con�guring the smtpserver, and as such, it can be seen...

Behaviour is based on glob patterns matching the HELO/EHLO name given by a remote client. Lines

beginning with a �#�, or whitespace are ignored in the �le, and all other lines must consist of two

tokens: a shell-style (glob) pattern starting at the beginning of the line, whitespace, and a sequence of

style �ags. The �rst matching line is used. As a special case, the �ags section may start with a !

character in which case the remainder of the line is a failure comment message to print at the client.

This con�guration capability is intended as a way to control misbehaving client software or mailers.

The meanings of the style �ag characters are as follow:

f

Check �MAIL FROM� addresses through online processing at the attached router process

t

Check RCPT TO addresses through online processing at the attached router process

v

Allow execution of VRFY command online at the attached router process

e

Allow execution EXPN command online at the attached router process

R

Require addresses to be in fully quali�ed (domained) form: �local@remote� (strict 821)

S

Allow Sloppy input for systems incapable to respect RFC 821 properly; WinCE1.0 does:

�MAIL FROM:user@domain� :-(

12.2. Policy Based Relaying Control

The policy database that smtpserver uses is built with policy-builder.sh script, which bundles

together a set of policy source �les:

File What

66

Chapter 12. Smtpserver Administration

File What

DB/smtp-policy.src The boilerplate

DB/localnames (�= _localnames�)

DB/smtp-policy.relay.manual (�= _full_rights�)

DB/smtp-policy.relay (�= _full_rights�)

DB/smtp-policy.mx.manual (�= _relaytarget�)

DB/smtp-policy.mx (�= _relaytarget�)

DB/smtp-policy.spam.manual (�= _bulk_mail�)

DB/smtp-policy.spam (�= _bulk_mail�)

If you want, you can modify your smtp-policy.src boilerplate �le as well as your installed

policy-builder.sh script.

Basically these various source �les (if they exist) are used to combine knowledge of valid users

around us:

smtp-policy.src

The controlling boilerplate, which you should modify!

localnames

Who we are � ok domains for receiving.

smtp-policy.relay

Who can use us as outbound relay.

Use [ip.number]/maskwidth here for listing those senders (networks) we want to trust. You

may also use domains, or domain suf�xes so that the IP-reversed hostnames are accepted (but

that is a it risky thing due to ease of fakeing the reversed domain names):

[11.22.33.00]/24

ip-reversed.host.name

.domain.suffix

Server sets its internal �always_accept� �ag at the source IP address tests before it decides

on what to tell to the contacting client. The �ag is not modi�ed afterwards during the session.

Usage of domain names here is discouraged as there is no way to tell that domain �foo.bar�

here has different meaning than same domain elsewere � at �smtp-policy.mx,� for example.

smtp-policy.mx.manual

smtp-policy.mx

Who really are our MX clients. Use this when you really know them, and don't want just to

trust that if recipient has MX to you, it would be ok. . .

You can substitute this knowledge with a fuzzy feeling by using �acceptifmx -� attribute at

the generic boilerplate. List here domain names, possibly suf�xes:

mx-target.dom

.mx-target.dom

The suf�x (�.mx-target.dom�) does not match to the �dot-less� domain name:

�mx-target.com� !

You CAN also list here all POSTMASTER addresses you accept email routed to:

67

Chapter 12. Smtpserver Administration

postmaster@local.domain

postmaster@client.domain

these are magic addresses that email is accepted to, even when everything else is blocked.

smtp-policy.spam.manual

smtp-policy.spam

Those users, and domains that are absolutely no-no for senders, or recipients no matter what

earlier analysis has shown. (Except for those senders that we absolutely trust..)

user@domain

user@

domain

At the �smtp-policy.src� boiler-plate �le there is one particular section containing default

setting statements. See �gure Figure 12-3 for the salient details concerning this.

Figure 12-3. The smtp-policy.src �le default settings fragment

...

#| ===========================

#|

#| Default handling boilerplates:

#|

#| "We are not relaying between off-site hosts, except when ..."

#|

#| You MUST uncomment one of these default-defining pairs, or the blocking

#| of relay hijack will not work at all !

#|

#| == 1st alternate: No MX target usage, no DNS existence verify

#| Will accept for reception only those domains explicitely listed

#| in �smtp-policy.mx� and �localnames� files. Will not do

#| verifications on validity/invalidity of source domains:<foo@bar>

#

. relaycustomer - relaytarget -

[0.0.0.0]/0 relaycustomer - relaytarget -

#

#| == 2nd alternate: No MX target usage, DNS existence verify

#| Like the 1st alternate, except will verify the sender

#| (MAIL FROM:<..>) address for existence of the DNS MX and/or

#| A/AAAA data -- e.g. validity.

#| If RBL parameters are set below, will use them.

#

. relaycustomer - relaytarget - senderokwithdns + = _rbl1

[0.0.0.0]/0 relaycustomer - relaytarget - senderokwithdns + = _rbl0

#

#| == 3rd alternate: MX relay trust, DNS existence verify

#| For the people who are in deep s*... That is, those who for some

#| reason have given open permissions for people to use their server

#| as MX backup for their clients, but don't know all domains valid

#| to go thru... Substitutes accurate data to user's whimsical DNS

#| maintenance activities. Vulnerable to inbound MX resource abuse.

#| If RBL parameters are set below, will use them.

. relaycustomer - acceptifmx - senderokwithdns + = _rbl1

[0.0.0.0]/0 relaycustomer - acceptifmx - senderokwithdns + = _rbl0

#| == 4th alternate: Sender & recipient DNS existence verify

68

Chapter 12. Smtpserver Administration

#| This is more of an example for the symmetry's sake, verifies that

#| the source and destination domains are DNS resolvable, but does not

#| block relaying

#

. senderokwithdns - acceptifdns -

[0.0.0.0]/0 senderokwithdns - acceptifdns -

#

#|

#| You may also add �test-dns-rbl +� attribute pair to [0.0.0.0]/0

#| of your choice to use Paul Vixie's http://maps.vix.com/ MAPS RBL

#| system.

#|

#| These rules mean that locally accepted hostnames MUST be listed in

#| the database with �relaytarget +� attribute.

#|

#| ===========================

#|

#| RBL type test rules:

#| First RBL variant: NONE OF THE RBL TESTS

_rbl0 # Nothing at early phase

_rbl1 # Nothing at late phase

#| Second RBL variant: Early block with RBL+DUL+RSS

#_rbl0 test-dns-rbl +:dul.maps.vix.com:relays.mail-abuse.org

#_rbl1 # Nothing at late phase

#| Third RBL variant: Late block with RBL+DUL+RSS

#_rbl0 rcpt-dns-rbl +:dul.maps.vix.com:relays.mail-abuse.org

#_rbl1 test-rcpt-dns-rbl +

#| (The "+" at the DNS zone defines is treated as shorthand to

#| "rbl.maps.vix.com")

#|

#| The Third RBL variant means that all target domains can all by

#| themselves choose if they use RBL to do source filtering.

#| The �= _RBL1� test *must* be added to all domain instances

#| where the check is wanted.

#| (Including the last-resort domain default of ".")

#| (Or inverting: If some recipient domain is *not* wanting RBL-type

#| tests, that domain shall have �test-rcpt-dns-rbl -� attribute

#| pair given for it at the input datasets - consider smtp-policy.mx

#| file!)

#|

#| These rules mean that locally accepted hostnames MUST be listed in

#| the database with 'relaytarget +' attribute. ("acceptifmx *" allows

#| reception if the local system is amonst the MXes.)

#|

#| ===========================

#|

#| If your system has �whoson� server (see contrib/whoson-*.tgz),

#| you can activate it by adding 'trust-whoson +' attribute pair to

#| the wild-card IP address test: [0.0.0.0]/0 of your choise.

#|

#| ===========================

#|

#| For outbound relaying control for fixed IP address networks, see

69

Chapter 12. Smtpserver Administration

#| comments in file: smtp-policy.relay

#|

#| ===========================

...

12.3. Content Based Filtering

The ZMailer can do also message content analysis with an external program at the end of DATA-dot

phase, and BDAT LAST phase (that is, when the input message is complete, and �nal

acknowledgement is expected by the email sender.)

The program becomes active if PARAM entry �content�lter� is set:

External program for received message content analysis:

#PARAM contentfilter $MAILBIN/smtp-contentfilter

More details are at the Reference part: Section 17.5.

70

Chapter 13. Router Administration

The router is the part of the ZMailer that uses algorithms, and control databases to determine what

latter stages, like scheduler should do to the message.

The Figure 13-1 repeats earlier picture showing central components of the system, and where the

router is in relation to to all.

Figure 13-1. ZMailer's processes; Router

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

In following our intention is to cover topics of:

� What input data router uses

� What output it produces

� How the router is con�gured, including of what is 'dbases.conf' �le.

� How it can be tuned

FIXME:

- Intro to what the router does to the message

- How the configuration scripts are loaded

- How the standard scripts are tunable by means of databases,

specifically 'dbases.conf'

- The ROUGHT logic of the standard scripts

- What to do if one wants to tune ?

71

Chapter 13. Router Administration

The names (determined at compile-time) and interface speci�cations for the routing and crossbar

functions, are the only crucial �magical� things one needs to contend with in a proper router

con�guration. The syntax and semantics of the con�guration �le's contents are dealt with in the

following subsection. The details of the two functions introduced here are speci�ed after that, once

the necessary background information has been given.

Router behavior is controlled by a con�guration �le read at startup. It is a zmsh(1) script that uses

facilities provided built into the router.

The con�guration �le looks like a Bourne Shell script at �rst glance. There are minor syntax changes

from standard sh(1), but the aim is to be as close to the Bourne Shell language as is practical. In fact

some aspects of variable handling are more of PERL style, and others are even LISPish.

The contents of the �le are compiled into bytecode, which can then be interpreted by the router. The

con�guration �le is usually self-contained, although an easy mechanism exists to make use of

external UNIX programs when so desired. Together with a very �exible database lookup mechanism,

functions, and address manipulation based on token-matching regular expressions, the con�guration

�le language is an extremely �exible substrate to accomplish its purpose. When the language is

inadequate, or if speed becomes an issue, it is possible to call built in (C coded) functions. The

interface to these functions is mostly identical to what a standalone program would expect (modulo

symbol name clashes and return values), to ease migration of external programs to inclusion in the

router process.

13.1. Con�guration File Programming Language

Whenever the router process starts, its �rst action is to read its con�guration �le. The con�guration

�le is a text �le which contains statements interpreted immediately when the �le is read. Some

statements are functions, in which case the function is de�ned at that point in reading the

con�guration �le. The purpose of the con�guration �le is to provide a simple way to customize the

behavior of routing process of the mailer, and this is primarily achieved by de�ning the router (at

Section 21.4.2), and crossbar (at Section 21.4.3) functions. For these to work properly, some

initialization code and auxiliary functions will usually be needed.

At �rst sight, a con�guration �le looks like a Bourne shell script. The ideal is to duplicate the

functionality, syntax, and to a large degree the semantics, of a shell script. Therefore, the

con�guration �le programming language is de�ned in terms of its deviation from standard Bourne

shell syntax and semantics. The present differences are:

� No repeat statement.

� Functions are allowed, parameter lists are allowed. If not enough arguments are present in a

function call to exhaust the parameter list, the so-far unbound parameter variables are bound to ""

(the empty string) as local variables. For example, this is the identity address rewriting function:

null (address) {

return $address # surprise!

}

� Multiple-value returns are allowed. The return statement can be used to return a non-��

(non-empty string) value from a function. The following are all legal return statements:

return

return $address

return $channel ${next_host} ${next_address}

72

Chapter 13. Router Administration

� Variables are dynamically scoped, local variables are the ones in a function's parameter list and

those declared with the �local� statement. Only the �rst value of a multiple-value return may be

assigned to a variable. All values are either strings, or lists, so no type information, checking, or

declaration, is necessary.

� Quoting is a bit stilted. All quotes (double-, single-, back-), must appear in matching pairs at the

beginning and at the end of a word.

{\bf\large CHECK!} Single quotes are not stripped, double quotes cause the enclosed character

sequence to be collected into a quoted-string RFC822 token.

For example, the statement:

foo `bar "`baz`"`

is evaluated as

(apply 'foo (apply 'bar (baz)))

� In standard shells the IFS guides on how variable expansion results are to be treated. Namely in

cases where the expansion happens without being enclosed into double-quotes, the expansion

result is at �rst split with IFS contained characters forming the separation sequences.

ZMailer's �shell� behaves alike PERL in this regard, and will not do IFS interpolation on the

result. However, unlike with PERL, double-quoted evaluation will not have its contents

re-evaluated.

Thus it is equally safe to do assignments like:

var1='some text here'

var2=' more text

cat1="$var1$var2"

cat2=$var1$var2

The notable thing at this particular example is that both result variables are catenates of the input

strings.

However! If either of inputs is a list of any kind, then the catenate is not to be done this way! See

lappend.

� Due to lack of implicite split by the IFS characters, ZMailer �shell� contains function ifssplit.

� The for construct is even more strange, and classical Bourne script:

countvar='1 2 3 4 5 6'

for x in $countvar; do ... ; done

Yields only nasty surprise.

Here are two alternates on how to do it:

countvar='1 2 3 4 5 6'

for x in $(ifssplit $countvar); do ... ; done

countvar=(1 2 3 4 5 6)

for x in $(elements $countvar); do ... ; done

� Conditional substitution forms are supported:

${variable:=value}

${variable:-value}

${variable:+value}

But appear to be borken ??

� Patterns (in case labels) are parsed once, the �rst time they are encountered.

This is like with PERL's �m/../o� patterns.

73

Chapter 13. Router Administration

� At the end of a case label, the sequentially next case labels of the same case statement will be tried

for successful pattern matching (and the corresponding case label body executed). The only

exceptions (apart from encountering a return statement) are:

again

a function which retries the current case label for a match

break

continues execution after the current case statement

� A regular expressions using variant of �case�, with two �avours:

ssift

A �String Shift� where the input string is handled as is.

tsift

A �Token Shift� where the input string is spliced according to RFC-822 tokenization rules.

Especially RFC-822 special characters cause tokens to split.

With �tsift� the �.� (dot) will match any single �rfc822-token�, that is, input string

�foo.bar� has three tokens: �foo� (atom), �.� (dot, special), and �bar� (atom).

Overall usage of these �sifts� is very much like that of �case�, including the need for matching

termination tokens:

ssift "$invar" in

pattern

statements

;;

tfiss

tsift "$invar" in

pattern

statements

;;

tfist

� Various standard Bourne shell functions do not exist built in.

� The general form of function calls in the system is:

$(funcname arguments)

It returns a scalar or list object, and the result can be stored into variables at will.

� Relations, and other database lookups are constructed as function calls where the relation name is

the function name. More about this later.

There are currently only three entry points (i.e. magic names known to the router code) in the

con�guration scripts, namely the process, the router, and the crossbar -functions.

� The process() script function is called with a �le name as argument. The �le is typically located

in the $POSTOFFICE/router/ directory. The process() is a protocol switch function which

uses the form of the �le name to determine how to process different types of messages.

74

Chapter 13. Router Administration

� The router() script function is called with an address as argument, and returns a quad of

(channel, host, user, attribs) as three separate values, corresponding to the channel the message

should be sent out on (or, the router function can also be called to check on who sent a

message), the host or node name for that channel (semantics depend per what channel is in effect),

and the address the receiving agent should transmit to. The fourth parameter is �attribute� storage

variable name from which a �privilege� value-pair is picked for recipient address security control

functions.

� The crossbar() function is in charge of rewriting envelope addresses, selecting message header

address munging type (a function to be called with each message header address), and possibly

doing per-message logging or enforcing restrictions deemed necessary. It takes a sender-quad and

a receiver-quad as arguments (eight parameters altogether). It returns the new values for each

element of the two quads, and in addition a function name corresponding to the function to be

used to rewrite header addresses for the speci�c destination. If the destination is to be ignored,

returning a null function name will accomplish this.

There is a fourth script entrypoint used by the smtpserver program, namely the server(), which is

used to implement smtpserver's realtime support facilities for �EXPN�, and �VRFY� commands, and

optionally also to process addresses in �MAIL FROM:<...>�, and �RCPT TO:<...>� commands.

The router has several built in (C coded) functions. Their calling sequence and interface

speci�cation is exactly the same as for the functions de�ned in the con�guration �le. Some of these

functions have special semantics, and they fall into three classes, as follows:

� Functions that are critical to the proper functioning of the con�guration �le interpreter:

return

returns its argument(s) as the value of a function call

again

repeats the current case, and *sift label

break

exits case, and *sift statements

� Functions that are necessary to complete the capabilities of the interpreter:

relation

de�nes a database to the database lookup mechanism

sh

an internal function which runs its arguments as /bin/sh would

� Non-critical but recommended functions:

echo

emulates /bin/echo

exit

aborts the router with the speci�ed status code

75

Chapter 13. Router Administration

hostname

internal function to get and set the local idea about the system name

trace

turns on selected debugging output

untrace

turns off selected debugging output

[

test

emulates a subset of �/bin/test� (a.k.a. �/bin/[�) functionality.

The relation function is described in �Databases�, at section Section 13.2. Functions trace, and

untrace are described in connection with debugging.

See Logging and Statistics, section Chapter 16. (This will probably change to

Reference/Router/Debugging)

The hostname function requires some further explanation. It is intended to emulate the BSD UNIX

/bin/hostname functionality, except that setting the hostname will only set the router's idea of the

hostname, not the system's. Doing so will enable generation of �Message-Id:� and �Received:�

�trace� headers on all messages processed by the router.

It is done this way since the router needs to know the of�cial domain name of the local host in order

to properly generate these headers, and this method is cleaner than reserving a magic variable for the

purpose.

The router cannot assume the hostname reported by the system is a properly quali�ed domain name,

so the con�guration �le may generate it using whichever method it chooses.

If the hostname indeed is a fully quali�ed domain name, then:

hostname "hostname"

will enable generation of trace headers.

Finally, note that a symbol can have both a function-value and a string-value. The string value is of

course accessed using the �$� pre�x convention of the Bourne shell language.

To test the con�guration or routing data, proceed as shown in �gure Figure 13-2.

Figure 13-2. Example of running tests on router

sh$ $MAILBIN/router -i (select interactive mode)

z$ rtrace (turn tracing on)

z$ router user@broken.address (the address that gave you trouble)

z$ router another@address (and so on)

Old salts can use �/usr/lib/sendmail -bt� instead of �router -i�. Once satis�ed that routing

works, command:

zmailer router

will restart the router.

76

Chapter 13. Router Administration

You can also run the router directly on a message. Copy your message to someplace other than the

postof�ce (/tmp/ is usually good), to a numeric �le name. If the �le name is �123�, you run

$MAILBIN/router 123

this will create the �le �.123� containing the control information produced by the router.

13.2. Databases

FIXME:

- Intro

- How 'dbases.conf' file works

- How the databases are defined in the deep down inside ('relation' function)

- How lookup works

Many of the decisions and actions taken by con�guration �le code depend on the speci�cs of the

environment the MTA �nds itself in. So, not just the facts that the local host is attached to (say) the

UUCP network and a Local Area Network are important, but it is also essential to know the speci�c

hosts that are reachable by this method. Hardcoding large amounts of such information into the

con�guration �le is not practical. It is also undesirable to change what is really a program (the

con�guration �le), when the information (the data) changes.

The desirable solution to this data abstraction problem is to provide a way for the con�guration �le

programmer to manage such information externally to ZMailer, and access it from within the router.

The logical way to do this is to have an interface to externally maintained databases. These databases

need not be terribly complicated; after all the simplest kind of information needed is that a string is a

member of some collection. This could simply correspond to �nding that string as a word in a list of

words.

However, there are many ways to organize databases, and the necessary interfaces cannot be known

in advance. The router therefore implements a framework that allows �exible interfacing to

databases, and easy extension to cover new types of databases.

To use a database, two things are needed: the name of the database, and a way of retrieving the data

associated with a particular key from that database. In addition to this knowledge, the needs of an

MTA do include some special processing pertinent to its activities and the kind of keys to be looked

up.

Speci�cally, the result of the data lookup can take different forms: one may be interested only in the

existence of a datum, not its value, or one may be looking up paths in a pathalias database and need

to substitute the proper thing in place of �%s� in the string returned from the database lookup. It

should be possible to specify that this kind of postprocessing should be carried out in association

with a speci�c data access. Similarly, there may be a need for search routines that depend on the

semantics of keys or the retrieved data. These possibilities have all been taken into consideration in

the de�nition of a relation. A relation maps a key to a value obtained by applying the

appropriate lookup and search routines, and perhaps a postprocessing step, applied to a speci�ed

database that has a speci�ed access method.

The various attributes that de�ne a relation are largely independent. There will of course be

dependencies due to the contents or other semantics of a database. In addition to the features

mentioned, each relation may optionally have associated with it a subtype, which is a string value

used to tell the lookup routine which table of several in a database one is interested in.

77

Chapter 13. Router Administration

There are no prede�ned relations in the router. They must all be speci�ed in the con�guration �le

before �rst use. This is done by calling the special function relation with various options, as

indicated by the usage strings printed by the relation function when called the wrong way. See

�gure Figure 13-3.

Figure 13-3. �Usage:� of relation function

relation [-t dbtype [,subtype]] [-f file] [-e#] [-s#] [-bilmnpu%] [-d driver] [-C

configfile] name

Where dbtypes include: incore, header, unordered, ordered, hosts�le, bind, selfmatch, ndbm, gdbm,

btree, bhash

The �-t� option speci�es one of several prede�ned database types, each with their speci�c lookup

routine. It determines a template for the set of attributes associated with a particular relation. The

prede�ned database types are:

bhash

the database is in BSD/SleepyCat DB HASH format.

bind

the database is the BIND nameserver, accessed through the standard resolver routines.

btree

the database is in BSD/SleepyCat DB BTREE format.

dbm

the database is in DBM format. Note that the original dbm had no dbm_close() function, thus

there was no way to dissociate active database from a process. A bit newer variant of dbm has

the close function, and multiple dbm's can be used. (You propably won't encounter this beast at

all..)

gdbm

the database is in GNU GDBM format.

headers

router internal database of various headers, and how they are to be treated.

hostsfile

/etc/hosts lookup using gethostbyname().

incore

the database is a high-speed bundle of data kept entirely in the router process core memory.

This is for a short-term data storage, like handling duplicate detection.

78

Chapter 13. Router Administration

ldap

Mechanism for X.500 Directory access lookup with the "Light-weight Directory Access

Protocol."

ndbm

the database is in NDBM (new DBM) format. (At which the length of key + length of data must

not exceed 1024 bytes!)

ordered

the database is a text �le with key-datum pairs on each line, keys are looked up using a linewise

binary search in the sorted �le.

selfmatch

a special type that does translate the numerical address of format 12.34.56.78 (from within

address-literal bracets) into binary form, and checks that it is (or is not) actually our own local

IP addresses. This is used in address literal testing of addresses of type:

localpart@[12.34.56.78].

unordered

the database is a text �le with key-datum pairs on each line, keys are looked up using a

sequential search. First to match is used.

yp

Sun SunOS 4.x YP (these days "NIS") interface library.

A subtype is speci�ed by appending it to the database type name separated by a slash, or a comma.

For example, specifying bind/mx as the argument to the �-t� option will store �mx� for reference

by the access routines whenever a query to that relation is processed. The subtypes must therefore be

recognized by either the database-speci�c access routines (for translation into some other form), or

by the database interface itself.

For unordered and ordered database types, the datum corresponding to a particular key may be

null. This situation arises if the database is a simple list, with one key per line and nothing else. In

this situation, the use of an appropriate post-processor option (e.g. �-b�) is recommended to be able

to detect whether or not the lookup succeeded.

The �-f� option speci�es the name of the database. This is typically a path that either names the

actual (and single) database �le, or gives the root path for a number of �les comprising the database

(e.g. �foo� may refer to the NDBM �les �foo.pag� and �foo.dir�). For the hostsfile type of

database, the /etc/hosts �le is the one used (and since the normal �hosts� �le access routines do

not allow specifying different �le, this cannot be overridden).

The �-s� option speci�es the size of the cache. If this value is non-zero (by default it is 10), then an

LRU cache of this size is maintained for previous queries to this relation, including both positive and

negative results.

The �-e� option speci�es the cache data expiration time in seconds.

The �-b� option asks that a postprocessor is applied to the database lookup result, so the empty

string is returned from the relation query if the database search failed, and the key itself it returned if

the search succeeded. In the latter case, any retrieved data is discarded. The option letter is short for

Boolean.

79

Chapter 13. Router Administration

The �-n� option asks that a postprocessor is applied to the database lookup result, so the key string

is returned from the relation query if the database search failed, and the retrieved datum string is

returned if the search succeeded. The option letter is short for Non-Null.

The �-l� option asks that all keys are converted to lowercase before lookup in the database. This is

mutually exclusive with the �-u� option.

The �-u� option asks that all keys are converted to uppercase before lookup in the database. This is

mutually exclusive with the �-l� option.

The �-d� option speci�es a search routine. Most commonly used argument for this option is

�pathalias�, specifying a driver that searches for the key using domain name lookup rules.

The �-C� option speci�es a con�guration �le for the underlying database mechanism. Exact details

depend by the database mechanisms.

The �-%� option enables substitution of �%0� thru �%9� patterns in the db lookup results with key,

iterated partial key, or positional parameter to lookup of the database. See Reference Section 21.5.50

for more information.

Figure 13-4. Some examples of relation de�nitions

relation -lmt $DBTYPE -f $MAILVAR/db/aliases$DBEXT aliases

relation -lm%t $DBTYPE -f $MAILVAR/db/fqdnaliases$DBEXT fqdnaliases

relation -lm%t $DBTYPE -f $MAILVAR/db/routes$DBEXT -d pathalias routes

if [-f /etc/resolv.conf]; then

relation -nt bind/cname -s 100 canon # T_CNAME canonicalize hostname

relation -nt bind/uname uname # T_UNAME UUCP name

relation -bt bind/mx neighbour # T_MX/T_WKS/T_A reachability

relation -t bind/mp pathalias # T_MP pathalias lookup

else

relation -nt hostsfile -s 100 canon # canonicalize hostname

relation -t unordered -f $MAILBIN/db/hosts.uucp uname

relation -bt hostsfile neighbour

relation -t unordered -f /dev/null pathalias

fi

Figure 13-5. More examples of alternate forms of database reference

#

We maintain an aliases database, and may access it via NDBM,

or via indirect indexing:

#

if [-f $MAILBIN/db/aliases.dat]; then

relation -t ndbm -f $MAILBIN/db/aliases aliases

else

relation -it ordered -f $MAILBIN/db/aliases.idx aliases

fi

Figure 13-6. More miscellaneous relation de�nitions to illustriate various possibilities

relation -t unordered -f /usr/lib/news/active -b newsgroup

relation -t unordered -f /usr/lib/uucp/L.sys -b ldotsys

relation -t ordered -f $MAILBIN/db/hosts.transport -d pathalias transport

80

Chapter 13. Router Administration

The �nal argument for the relation is not preceeded by an option letter. It speci�es the name the

relation is known under. Note that it is quite possible for different relations to use the same database

(like in case of �bind�).

Some sample relation de�nitions are in �gure Figure 13-4. That fragment de�nes a set of relations

that can be accessed in the same way, using the same names, independent of their actual de�nition.

CHECK! (-i option!) As the comment says, the relation name aliases has special signi�cance to the

router. Although the relation is not special in any other way (i.e. it can be used in the normal

fashion), the semantics of the data retrieved are bound by assumptions in the aliasing mechanism.

(Or more speci�cally, actually database compilation in case this isn't �ordered� or �unordered� �le

will handle this.)

These assumptions are that key strings are local-name's, and the corresponding datum gives a byte

offset into another �le (the root name of the aliases �le, with a �.dat� extention), which contains the

actual addresses associated with that alias.

The reason for this indirection is that the number of addresses associated with a particular alias can

be very large, and this makes the traditional simple database formats inadequate. For example, quick

lookup in a text �le is only practical if it is sorted and has a regular structure. A large number of

addresses associated with an alias makes structuring a problem. The situation for DBM �les and

variations have problems too, due to the intrinsic limits of the storage method. The chosen

indirection scheme avoids such problems without loss of ef�ciency.

More examples on �gure Figure 13-6, where the �rst two illustrate convenient coincidences of

format, and the last de�nition shows what might be used if outgoing channel information is

maintained in a pathalias-format database (e.g. �bar smtp!bar� means to send mail to �bar� via the

SMTP channel).

13.2.1. Using a Pathalias Database With �%0� substitution

The pathalias is an UUCP era thing, and not quite what one would need these days, but just in

case. . .

Accessing route databases is a rather essential capability for a mailer. At the University of Toronto,

all hosts access a centrally stored database through a slightly modi�ed nameserver program. If such a

setup is not practical at your site, other methods are available. The most widespread kind of route

database is produced by the pathalias program.

The current ZMailer can do two separate things, which were combined into the old pathalias idea:

� relation de�nes driver routine with �-d pathalias�

� relation de�nes that lookup result contained �%0� thru �%9� strings may be substituted (the

�-%� option).

The pathalias generates key-value pairs of the form:

uunet ai.toronto.edu!uunet!%s

.css.gov ai.toronto.edu!uunet!seismo!%s

which need to be post-processed to:

uunet ai.toronto.edu!uunet!%0

.css.gov ai.toronto.edu!uunet!seismo!%0

81

Chapter 13. Router Administration

which when queried about �uunet� and �beno.css.gov� correspond to the routes:

ai.toronto.edu!uunet

ai.toronto.edu!uunet!seismo!beno.css.gov

Notice that there are two basic forms of routes listed: routes to UUCP node names and routes to

subdomain gateways. Depending on the type of route query, the value returned from a pathalias

database lookup needs to be treated differently. For now, this may be accomplished by a

con�guration �le relation de�nition and interface function as shown in �gure Figure 13-7.

Figure 13-7. An example of lookup driver for genuine pathalias generated database

relation -t ndbm -f $MAILBIN/uuDB -d pathalias padb

pathalias database lookup function

padblookup (name) {

local path

path = $(padb "$name")

tsift "$path" in

((.+)!)?([^!]+)!%s

if ["$3" == "$name"]; then

path = "$2!$3"

else

path = "$2!$3!$name"

fi

;;

.*%s.*

echo "illegal route in pathalias db: $path"

;;

tfist

return "$path"

}

This is actually a simplistic algorithm, but it does illustrate the method. The lookup algorithm used

when the �-d� �ag is speci�ed in the relation de�nition command is rather simple; it doesn't test

various case combinations for the keys it tries. Therefore, the keys in the pathalias output data should

probably be converted to a single case, and the �-l�, or �-u� option given in the relation

de�nition as well..

13.2.2. Mailing Lists and ~/.forward

FIXME! FIXME! -- VERIFY! UPDATE!

One form of mailing lists are implemented as �les in the $MAILSHARE/lists/ directory (or

symlinks in there to �les residing elsewere, though from a system reliability standpoint it is better to

have them in that directory, and let users have symlinks to those �les � consider the NFS with the

user home directories in other machines. . .)

An alternate mechanism is to implement lists in the traditional sendmail manner, however it means

feeding the message to the scheduler, and external program (/usr/lib/sendmail) before it comes

back to the router.

82

Chapter 13. Router Administration

The list �le must have protection 0664 or stricter, as an example: 0700 has invalid bits. (ok, so the

�x�-bit is not used, but illegal it is, all the same.) Preferrable protection is: 0600

The $MAILSHARE/lists/ directory must be owned by root. The directory containing the �aliases�

�le ($MAILSHARE/db/) must be owned by root, and the aliases �le must comply with above

mentioned protections.

The owner of �FILE� gets �FILE-owner�, and �FILE-request� mails, unless any of the above listed

limitations are breached.

If �FILE� has protection 666 (for example), the ZMailer internal function �$(filepriv

$filepath)� returns �$nobody� (userid of nobody), and function �$(uid2login $nobody)�

fails, thus losing �*-owner�, and �*-request� features.

Also lists with �lepriv �nobody� cannot be archived simply by having an �address� of form

�/file/path� amongst the recipient addresses.

This type of a mailing list is set up by creating a �le in the $MAILVAR/lists/ directory. The �le

name is the list's name (LIST) in all lowercase (case-insensitive matching is done by converting to

lowercase before comparison).

The �le contains a list of mail addresses (typically one per line) which are parsed to pull out the

destination addresses. This means the users' full names can be given just as in any valid RFC822

address.

The local account which owns the �le will by default receive messages sent to LIST-owner and

LIST-request. This can be explicitly overridden in the aliases �le. Mail to the list will go out with

LIST-owner as the sender, so list bounce messages will return to the LIST-owner address. Archives

of the list can be created by adding a �le name address (a local pathname starting with �/�) to the

LIST �le. The archive �le is written with the ownership of the owner of the LIST �le. Forwarding

the mailing list into a newsgroup can be done using a mail to news script (two generations are

provided in utils/distribute and utils/mail2news in the sources).

13.2.2.1. aliases.cf Logic

FIXME! FIXME! -- VERIFY! UPDATE!

� If an aliases database exists and local-part is found in it, the list of addresses mapped to by the

alias entry is substituted.

� If an mboxmap �le exists and a mapping for the local-part is found in it, the mapping (a

�host!homedir!user� value) determines the remote recipient (user@host) or recipient

mailbox (homedir/../PObox/user) if host is local.

� If local-part is a login name and a readable �~/.forward� �le exists in the home directory, the

list of addresses it contains is substituted.

� If local-part is a �le basename in the $MAILVAR/lists/ directory, the list of addresses contained

in the �le is substituted, and the sender address set to local-part-owner.

� If local-part is of the form ��le-owner� or ��le-request�, where �le is an entry in the

$MAILVAR/lists/ directory, the account name of the owner of the �le is substituted. (File-owner

identity and correct �le and directory protections are important.)

� If the local-part is of format �user.name�, it is optionally mapped via separate fullnamemap.

� If PUNTHOST is de�ned (in /etc/zmailer.conf) the address local-part@$PUNTHOST is

substituted. Note that in this case the mboxmap mechanism should be used to ensure local spool

mailbox delivery for local users.

83

Chapter 13. Router Administration

13.2.2.2. aliases

FIXME! FIXME! -- aliases db regeneration methods have changed since

The �le containing the actual aliasing data is automatically created by the router when asked to

reconstruct the aliases database. It does this based on a text �le containing the alias de�nitions. This

text �le, which corresponds to the sendmail aliases �le, consists of individual alias de�nitions,

possibly separated by blank lines or commentary. Comments are introduced by a sharp sign

(octothorp: �#�) at any point where a token might start (for example the beginning of a line, but not

in the middle of an address), and extend to the end of the line. Each alias de�nition has the exact

syntax of an RFC822 message header, containing an address-list, except for comments. The header

�eld name is the local-part being aliased to the address-list that is the header value.

The fact that an alias de�nition follows the syntax for an RFC822 message header, introduces an

incompatibility with sendmail. The string �:include:� at the start of a local-part (a legacy of

RFC733) has special semantics. Sendmail would strip this pre�x, and regard the rest of the local-part

as a path to a �le containing a list of addresses to be included in the alias expansion. Indeed, the

router behaves in the same manner, but because some of the characters in the pre�x are RFC822

specials, the entire local-part must be quoted. Thus, whereas sendmail(8) allowed:

people: :include:/usr/lib/mail/lists/people

the proper syntax with ZMailer is:

people: ":include:/usr/lib/mail/lists/people"

Like sendmail, if a local-part is not found in the aliases database, the router also checks

�~local-part/.forward� (if such exists) for any address expansion. The .forward �le format is

also an RFC822 address list, similar to what sendmail expects.

As special cases, a local-part starting with a pipe character (�|�) is treated as mail destined for a

program (the rest of the local-part is any valid argument to a �sh -c� command), and a local-part

starting with a slash character (�/�) is treated as mail destined for the �le named by the local-part.

Figure 13-8. General format of Alias �le entries:

�The Key� �The Data�

local-address-token: "replacement address" ,

"extension line with another

address"

Protection of the aliases database must be at least 0644. Protection of the $MAILVAR/db/ directory

must be at least 03755, or stricter.

The following processing is done for (replacement) local-parts (local mail addresses): Note that @'s

are not allowed in any local-part.

If the local-part starts with �|� assume it is a command speci�cation:

prog-pipe: "|/path/to/program -args"

84

Chapter 13. Router Administration

If the local-part starts with �/� assume it is a �le pathname:

file-path: "/path/to/file"

If the local-part starts with �:include:� the rest should be a �le pathname of a list of mail

addresses. They are substituted:

included-list: ":include:/path/to/address/file"

After this point, all matches are case-insensitive by means of translating the value to be looked up to

lower-case, and then conducting a case-sensitive lookup. All keys in aliases et.al. must be in lower

case � you can achieve this with bundled �newaliases� script, which calls �makedb� with �-l�

option to lowercasify keys. (The hash functions inside ndbm/gdbm/db/dbm are case sensitive, and as

such, there is no way to avoid this requirement.)

13.2.2.3. Security Considerations

A LIST �le must not be world writable, while most likely it can be group-writable. The

$MAILVAR/lists/ directory must also not be group or world writable and must be owned by root or

by the owner of the LIST �le. Otherwise the �le is declared insecure and all addresses in the �le get

the least possible privilege associated (the �nobody� uid). This can cause various things to break, for

example mailing list archival, or the -owner and -request features if �nobody� is not a valid account.

There is a mechanism to override using the modes on a file/directory as an indicator of its

safeness.

Turning on the sticky bit on a �le or directory tells the mailer to treat it as if it was only owner

writable independent of its actual modes.

This allows $MAILVAR/lists/ to be group or world writable and sticky-bitted if you want your

general user population (or special admin group) to be able to create mailing lists.

85

Chapter 13. Router Administration

86

Chapter 14. Scheduler Administration

The scheduler is the part of the ZMailer that manages message processing outbound from the MTA

proper.

The Figure 14-1 repeats earlier picture showing central components of the system, and where the

scheduler is in relation to them all.

Figure 14-1. ZMailer's processes; Scheduler

D
ia

gn
os

tic
 E

m
ai

ls

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

TODO!FIXME!

Here we present longer examples out of the scheduler.conf, and

reasons why the default script is as it is

- Intro

- Principles of scheduling, "threads"

- Clause selectors

- "local/*"

- "smtp/*.xyz"

- "smtp/*"

- "OTHER/*"

- How to roll your own when needed

- Something about the resource control ?

- scheduler.auth file, and its purpose

- MAILQv1/v2 interface, mailq-command

- but the protocols are REFERENCE material

- (manual-)expirer

- Diagnostics reporting, forms files

Appendix B contains full samples of scheduler.conf, and scheduler.auth

87

Chapter 14. Scheduler Administration

The major action of the scheduler is to periodically start up Transport Agents and tell them what to

do. This is controlled by a table in a con�guration �le that is read by the scheduler when it starts.

The scheduler receives the messages from the router in two �les: Original message �le in

$POSTOFFICE/queue/, and router written transport-speci�cations in $POSTOFFICE/transport/.

Because usually (UNIX) systems don't like of having very large amounts of �les in directories, as

lookups for them become intolerably slow, the scheduler has a subdirectory hashing mechanism.

Both queue/ and transport/ can be split to subdirectories at one or two levels with names of �A�

thru �Z�. See for the �-H� option of the scheduler below.

The idea with the sub-directory hashes is to split the workset into as even subsets as possible, usually

busy systems are run with �-HH� to have 26*26 sub-sub-directories into which the sets gets divided.

14.1. Principiles of scheduling: Threads

The router produces recipients �address quads� which consists of four components:

� Channel

� Host

� User

� Privilege

Of these, Channel, and Host parts are used by the scheduler to classify message recipients and to

choose to what Transport Agents to use, and how to use them.

To control how messages are sent out, the scheduler uses catenation of: Channel/Host to group

recipients. All recipients with same values there are groupped together in what is called thread.

Another related thing is so called thread group, which is the collection of all threads within same

scheduler Selector Clause. See Section 14.3.

Figure 14-2. Scheduler's Threads/Thread Groups

smtp

Channel Host

example.com

smtp }

}

Thread 2

Thread 1

Thread Group "smtp/*.com"

another.com

smtp5d more.com }

smtp5d }

Thread 3

Thread 4

Clause selectors:

Thread Group "smtp5d/*"

less.com

In normal case the scheduling is done by running single transport agent for the thread, which

delivers messages one at the time. This means that a single destination with thousands of messages

does not block the system signi�cantly more than some other destination with a single message.

88

Chapter 14. Scheduler Administration

Also in normal cases, when messages in given thread are all delivered, or otherwise determined that

nothing can be done, the transport agent can be switched to another thread within the same thread

group.

14.2. Scheduler Resource Control

FIXME! TO BE WRITTEN!

Note, there are three kinds of resource-pool limitation parameters which control when a given

channel+host pair (thread) is NOT taken into processing:

MaxTA: (Set in �*/*� clause)

GLOBAL parameter limiting the number of transport-agent processes that the scheduler can

have running at the same time.

With this you can limit the number of TA processes running at the same time lower than

maximum allowed by your OS setup.

The scheduler detects the max number of FDs allowed for a process, and analyzing how many

FDs each TA interface will need -- plus reserving 10 FDs for the itself, result is �probed

maxkids�.

MaxChannel: (default: �probed maxkids�)

Selector clause speci�c value limiting how many transport-agent processes can be running on

which the �channel� part is the same. You may specify dis-similar values for these as well. For

example you may use value '50' for all your 'smtp' channel entries, except that you want

always to guarantee at least �ve more for your own domain deliveries, and thus have:

smtp/*your.domain

maxchannel=55

If the sum of all �maxchannel� values in different channels exceeds that of �maxta�, then

�maxta� value will limit the amount of work done in extreme load situations.

MaxRing: (default: �probed maxkids�)

This limits the number of parallel transport agents within each selector de�nition. This de�ned

the size of the POOL of transport agent processes available for processing the threads matching

the selector clause.

MaxTHR: (default: 1)

This limits the number of parallel transport agents within each thread; that is, using higher value

than default �1� will allow running more than one TA for the jobs at the thread.

Do note that running more than one TA in parallel may also require lowering OVERFEED

value. (E.g. having a queue of 30 messages will not bene�t from more TAs, unless they all get

something to process. Having OVERFEED per default at 150 will essentially feed whole queue

to one TA, others are not getting any.)

OverFeed:

This tells how many job speci�ers to feed to the TA when the TA process state is �STUFFING�

Because the scheduler is a bit sluggish to spin around to spot active TAs, it does make sense to

feed more than one task to a TA, and then wait for the results.

89

Chapter 14. Scheduler Administration

14.3. The scheduler.conf �le

Any line starting with a �#� character is assumed to be a comment line, and is ignored, as are empty

lines. All other lines must follow a rigid format.

The scheduler con�guration �le consists of a set of clauses. Each clause is selected by the pattern it

starts with. The patterns for the clauses are matched, in sequence, with the channel/host string for

each recipient address. When a clause pattern matches an address, the parameters set in the clause

will be applied to the scheduler's processing of that address. If the clause speci�es a command, the

clause pattern matching sequence is terminated. Example of the clause can be seen in �gure Figure

14-3.

Figure 14-3. Example of scheduler.conf clause

local/*

interval=10s

expiry=3h

want 20 channel slots in case of blockage on one

maxchannel=20

want 20 thread-ring slots

maxring=20

command="mailbox -8"

A clause consists of:

� A selection pattern (in shell style) that is matched against the channel/host string for an address.

� 0 or more variable assignments or keywords (described below).

If the selection pattern does not contain a '/', it is assumed to be a channel pattern and the host

pattern is assumed to be the wildcard '*'.

The components of a clause are separated by whitespace. The pattern introducing a clause must start

in the �rst column of a line, and the variable assignments or keywords inside a clause must not start

in the �rst column of a line. This means a clause may be written both compactly all on one line, or

spread out with an assignment or keyword per line.

If the clause is empty (i.e., consists only of a pattern), then the contents of the next non-empty clause

will be used.

The typical con�guration �le will contain the following clauses:

� a clause matching all addresses (using the pattern */*) that sets up default values.

� a clause matching the local delivery channel (usually local).

� a clause matching the deferred delivery channel (usually hold).

� a clause matching the error reporting channel (usually error).

� clauses speci�c to the other channels known by the router, for example: smtp and uucp.

90

Chapter 14. Scheduler Administration

The actual names of these channels are completely controlled by the router con�guration �le.

Empty lines, and lines whose �rst non-whitespace character is �#�, are ignored.

Variable values may be unquoted words or values or double quoted strings. Intervals (delta time) are

speci�ed using a concatenation of numbers suf�xed with 's', 'm', 'h', or 'd'; modi�ers designating

the number as a second, minute, hour, or day value. For example: 1h5m20s.

The known variables and keywords, and their typical values and semantics are:

interval (1m)

speci�es the primary retry interval, which determines how frequently a transport agent should

be scheduled for an address. The value is a delta time speci�cation. This value, and the retries

value mentioned below, are combined to determine the interval between each retry attempt.

idlemax

When a transport agent runs out of jobs, they are moved to �idle pool�, and if a transport agent

spends more than idlemax time in there, it is terminated.

expiry (3d)

speci�es the maximum age of an address in the scheduler queue before a repeatedly deferred

address is bounced with an expiration error. The actual report is produced when all addresses

have been processed.

retries (1 1 2 3 5 8 13 21 34)

speci�es the retry interval policy of the scheduler for an address. The value must be a sequence

of positive integers, these being multiples of the primary interval before a retry is scheduled.

The scheduler starts by going through the sequence as an address is repeatedly deferred. When

the end of the sequence is reached, the scheduler will jump into the sequence at a random spot

and continue towards the end. This allows various retry strategies to be speci�ed easily:

brute force (or �jackhammer�)

retries=0

constant primary interval

retries=1

instant backoff

retries="1 50 50 50 50 50 50 50 50 50 50 50 50"

slow increasing (�bonacci) sequence

retries="1 1 2 3 5 8 13 21 34"

s-curve sequence

etries="1 1 2 3 5 10 20 25 28 29 30"

exponential sequence

retries="1 2 4 8 16 32 64 128 256"

91

Chapter 14. Scheduler Administration

maxta (0)

FIXME: REVISE RESOURCE CHECK NOTES! if retrying an address would cause the number

of simultaneously active transport agents to exceed the speci�ed value, the retry is postponed.

The check is repeated frequently so the address may be retried as soon as possible after the

scheduled retry interval. If the value is 0, a value of 1000 is used instead. Keep in mind that all

running transport agents will keep open two pipe(2) �le-handles, (or one socketpair(2), if

system has such bidirectional pipe entity,) and thus system-wide limits may force a lower

maximum than 1000. On a system with a maximum of 256 open �les, this would most likely

succeed at 120.

maxchannel (0)

if retrying an address would cause the number of simultaneously active transport agents

processing mail for the same channel to exceed the speci�ed value, the retry is postponed. The

check is repeated frequently so the address may be retried as soon as possible after the

scheduled retry interval. If the value is 0, a value of 1000 is used instead.

maxring (0)

Recipients are groupped into �threads�, and similar threads are groupped into �thread-rings�,

where the same transport agent can be switched over from one recipient to another. This de�nes

how many transport agents can be running at any time at the ring.

skew (5)

is the maximum number of retries before the retry time is aligned to a standard boundary

(seconds since epoch, modulo primary interval). The lower this number (1 is lowest), the faster

the alignment is done. The purpose of this alignment is to ensure that eventually a single

transport agent invokation will be able to process destination addresses that arrived randomly at

the scheduler.

user (root)

is the user id of a transport agent processing the address. The value is either numeric (a uid) or

an account name.

group (daemon)

is the group id of a transport agent processing the address. The value is either numeric (a gid) or

a group name.

command (smtp -srl ${LOGDIR}/smtp ${host}

is the command line used to start a transport agent to process the address. The program

pathname is speci�ed relative to the $MAILBIN/ta/ directory. The string �${channel}� is

replaced by the current matched channel, and �${host}� is replaced by the current matched host,

from the destination address, and �${LOGDIR}� substitutes ZENV variable LOGDIR value there.

It is strongly recommended that the �${host}� is not to be used on command de�nition, as it

limits the recyclability of the idled transporter.

bychannel

is a keyword (with no associated value which tells the scheduler that the transport agent

speci�ed in the command will only process destination addresses that match the �rst destination

channel it encounters.

92

Chapter 14. Scheduler Administration

This is automatically set when the string �${channel}� occurs in the command, but may also

be speci�ed manually. This is rarely used.

queueonly

a clause with queueonly �ag does not auto-start at the arrival of a message, instead it must be

started by means of smtpserver(8) command ETRN thru an SMTP connection.

An example of full scheduler.conf �le is in �gure Figure 14-4.

Figure 14-4. Example of full scheduler.conf �le

Default values

/ interval=1m expiry=3d retries="1 1 2 3 5 8 13 21 34"

maxring=0 maxta=0 skew=5 user=root group=daemon

Boilerplate parameters for local delivery and service channels

local/* interval=10s expiry=3h maxchannel=2 command=mailbox

error interval=5m maxchannel=10 command=errormail

hold/* interval=5m maxchannel=1 command=hold

Miscellaneous channels supported by router configuration

smtp/*.toronto.edu

smtp/*.utoronto.ca maxchannel=10 maxring=2

command="smtp -srl ${LOGDIR}/smtp"

smtp maxchannel=10 maxring=5

command="smtp -esrl ${LOGDIR}/smtp"

uucp/* maxchannel=5 command="sm -c ${channel} uucp"

The �rst clause (*/*) sets up default values for all addresses. There is no command speci�cation, so

clause matching will continue after address have picked up the parameters set here.

The third clause (error) has an implicit host wildcard of �*�, so it would match the same as

specifying error/* would have.

The �fth clause (smtp/*.toronto.edu) has no further components so it selects the components of the

following nonempty clause (the sixth).

Both the �fth and sixth clauses are speci�c to address destinations within the TORONTO.EDU and

UTORONTO.CA organization (the two are parallel domains). At most 10 deliveries to the smtp

channel may be concurrently active, and at most 2 for all possible hosts within TORONTO.EDU. If

�$host� is mentioned in the command speci�cation, the transport agent will only be told about the

message control �les that indicate SMTP delivery to a particular host. The actual host is picked at

random from the current choices, to avoid systematic errors leading to a deadlock of any queue.

14.4. Scheduler's Mailq

FIXME! TO BE WRITTEN!

14.5. Scheduler's scheduler.auth control �le

FIXME! TO BE WRITTEN!

93

Chapter 14. Scheduler Administration

14.6. manual-expirer

FIXME! TO BE WRITTEN!

14.7. Scheduler's Diagnostics Reporting

FIXME! TO BE WRITTEN!

14.7.1. Scheduler's Diagnostics Reporting, Forms Files

FIXME! TO BE WRITTEN!

94

Chapter 15. Transport Agent Administration

- Move to be a SECTION of Scheduler ?

- These are support thingies for the Scheduler anyway.

- Less details than REFERENCE has, focus differently

- sm

- smtp

- mailbox

- hold

- expirer

- errormail

These are ZMailer's components driven by the Scheduler to actually do message delivery actions.

The Figure 15-1 repeats earlier picture showing central components of the system, and where the

transport agents are in relation to the whole.

Figure 15-1. ZMailer's processes; Transport Agents

Router(s)

smtpserver

‘‘sendmail’’

Router spool(s)

Transporters

Scheduler

Command
pipes Transport spool

Input spool

Mailbox

15.1. Sm Transport Agent

sm is a ZMailer's sendmail(8) compatible transport agent to deliver messages by invoking a

program with facilities and in a way compatible with a sendmail(8) MTA.

The program scans the message control �les named on stdin for addresses destined for the channel

and/or the host given on the command line. If any are found, all matching addresses and messages

are processed according to the speci�cations for the mailer in the con�guration �le.

95

Chapter 15. Transport Agent Administration

The exit status of a mailer should be one of the standard values speci�ed in #include

<sysexits.h>. Of these, EX_OK indicates successful deliver, and EX_DATAERR,

EX_NOUSER, EX_NOHOST, EX_UNAVAILABLE, and EX_NOPERM indicate permanent

failure. All other exit codes will be treated as a temporary failure and the delivery will be retried.

Usage:

sm [-8] [-H] [-Q] [-V] [-f configfile] -c channel -h host mailer

Con�guration:

The con�guration �le $MAILSHARE/sm.conf associates the mailer keyword from the command line

with a speci�cation of a delivery program. This is very similar to the way the de�nition of a �mailer�

in sendmail(8). It requires �ags, a program name, and a command line speci�cation. These are in

fact the �elds of the entries of the con�guration �le. Lines starting with whitespace or a �#� are

ignored, and all others are assumed to follow format shown in �gure Figure 15-2.

Figure 15-2. Sample sm.conf �le

#mailer flags program argument list

#====== ===== ============== ================================

local mS sm/localm localm -r $g $u

prog - /bin/sh sh -c $u

tty rs /usr/local/to to $u

uucp U /usr/bin/uux uux - -r -a$g -gC $h!rmail ($u)

usenet m sm/usenet usenet $u

test n sm/test test $u

The mailer �eld extends from the beginning of the line to the �rst whitespace. It is used simply as a

key index to the con�guration �le contents. One or more whitespace is used as the �eld separator for

all the �elds.

The �ags �eld contains a concatenation of one-letter �ags. If no �ags are desired, a �-� character

should be used to indicate presence of the �eld. All normal sendmail (of 8.11(.0)) �ags are

recognized, but the ones that do not make sense in the context of ZMailer will produce an error (or

some are ignored). The �ags that change the behaviour of sm are:

b

will activate BSMTP-type wrapping with a �hidden-dot� algorithm; e.g. quite ordinary SMTP

stream, but in �batch mode�.

B

The �rst �B� turns on similar BSMTP wrapping as �b�, but adds SIZE and, if the sm is started

with option �-8�, also 8BITMIME options. The second �B� adds there also DSN (Delivery

Status Noti�cation) parameters.

E

will prepend �>� to any message body line starting with �From �. (Read: �From-space�)

f

adds �-f sender� arguments to the delivery program.

96

Chapter 15. Transport Agent Administration

n

will not prepend a �From �-line (normal mailbox separator line) to the message.

r

adds �-r sender� arguments to the delivery program.

S

will run the delivery program with the same real and effective uid as the sm process. If this �ag

is not set, the delivery program will be run with the real uid of the sm process. This may be

useful if sm is setuid.

m

informs sm that each instance of the delivery program can deliver to many destinations. This

affects $u expansion in the argument list, see below.

P

prepends a �Return-Path:� header to the message.

U

will prepend a �From �-line, with a �remote from myuucpname� at the end, to the message.

This is what is expected by remote rmail(1) programs for incoming UUCP mail.

R

use CRLF sequence as end-of-line sequence. Without it, will use LF-only end-of-line sequence.

X

does SMTP-like �hidden-dot� algorithm of doubling all dots that are at the start of the line.

7

will strip (set to 0) the 8th bit of every character in the message.

The path �eld speci�es the location of the delivery program. Relative pathnames are allowed and are

relative to the $MAILBIN/ directory.

The arguments �eld extends to the end of the line. It contains whitespace separated argv parameters

which may contain one of the following sequences:

$g

which is replaced by the sender address.

$h

which is replaced by the destination host.

$u

which is replaced by the recipient address. If the �m� mailer �ag is set and there are several

recipients for this message, the argument containing the �$u� will be replicated as necessary for

each recipient.

97

Chapter 15. Transport Agent Administration

98

Chapter 16. Logging and Statistics for

Administrator

What material is applicable here ?

How to control logging ?

- Settings/variables/whatnot controlling it

How to rotate logfiles ?

- Example scripts for rotation ?

99

Chapter 16. Logging and Statistics for Administrator

100

IV. Reference
Here are reference versions of the documentation for each subsystem, these go very deep into details.

Chapter 17. Smtpserver Reference

The ZMailer distribution contains an smtpserver program for the BSD socket implementation of

TCP/IP. It is an asynchronous implementation, in that while address syntax is checked in real time,

semantics are not, nor are other (optional in the SMTP standard) functions that require router

functionality.

The server will run an RFC-821 syntax scanner for addresses, plus possible policy analysis phase,

and if things are ok, it says �Yes yes, sure!� to everything. The program may also be used in

non-daemon mode to unpack BSMTP format messages on the standard input stream.

This program implements the server side of the SMTP protocol as described in RFC821, and knows

about the common extensions to the protocol expected by sendmail and BSMTP clients. By default

the program will kill the previous smtpserver daemon, if any, then detach and listen for SMTP

connections. Incoming messages will be submitted for processing using the zmailer(3) interface to

ZMailer. Some non-trivial address checking is doable in optional policy analysis functions within the

smtpserver, or can be acomplished with synchronous (or asynchronous) running of router. This

behaviour can be changed by a command line option (or HELO/EHLO style patterns) if you cannot

afford to transfer data just to bounce it back.

All router assisted checking is done by executing the router(8) program in interactive mode, and

executing well-known shell function with well-known parameters for each request.

The server implements also most of the ESMTP facilities invented up to date (Feb, 2000). The ones

that are active are visible at greeting response to �EHLO� command, as can be seen in �gure Figure

17-1.

Figure 17-1. Sample �EHLO� greeting with smtpserver

$ telnet 127.1 smtp

Connected to 127.1.

Escape character is '^]'.

220 localhost ZMailer

EHLO foo

250-localhost expected "EHLO localhost"

250-SIZE 1234567

250-8BITMIME

250-PIPELINING

250-CHUNKING

250-ENHANCEDSTATUSCODES

250-EXPN

250-VRFY

250-DSN

250-X-RCPTLIMIT 10000

250-ETRN

250 HELP

...

103

Chapter 17. Smtpserver Reference

17.1. Smtpserver Runtime Parameters

Usage:

smtpserver [-46aginvBV] [-p port] [-l logfile] [-s 'strict'] [-s [ftveRS]] [-L

maxloadaver] [-M SMTPmaxsize] [-P postoffice] [-R router] [-C cfgfile]

Parameters:

-4

Explicitly use IPv4 type of socket even on machines that are capable to do IPv6 type of

sockets.

-6

Explicitely (try to) use IPv6 type of socket even if the machine does not support it. By

default the server will try to use IPv6, if it has been compiled in an environment where it is

present, but will fall back to IPv4, if the runtime system does not have IPv6.

-8

This option is part of optional inbound translate processing; see �-X� option below.

-a

Turn on RFC931/RFC1413 identi�cation protocol, and log the information acquired with it

into the submitted �le. Reliability, validity, worthwhileness, ... all such are suspect at this.

-B

Flags the email to arrive via BSMTP channel (via BITNET, for example).

-B cfgfile

Speci�es nonstandard con�guration �le location; the default is

$MAILSHARE/smtpserver.conf.

-d nnnn

This option sets numeric debug value. Any non-zero will work. This numeric argument is

provision for possible bit-�ag or level oriented debugging mode. . . .)

-g

The �gullible� option will make the program believe any information it is told (such as

origin of a connection) without checking.

-h

Check �HELO� parameter very closely (syntax), and if it is bad, complain with �501�. Such

behaviour is against interoperability minded �Be lenient on what you accept� policy, and

apparently will break a lot of common clients. . . .

104

Chapter 17. Smtpserver Reference

-i

Runs the server interactively, which makes it usable for processing a batched SMTP stream

(BSMTP) on stdin. With �-v� option this echoes incoming BSMTP to create more

accurate faximile of BITNET BSMTP mailers.

-L maxloadaver

The maximum load-average the system is under when we still accept email.

Not all systems are supported for load-aver extraction; and as that information happens to

be very poorly extractable without major magics, it is our considered opinnion that it is

better to spend time to �gure other methods for limiting incoming email induced load

impact, than trying to see any load-average � anyway the ZMailer smtpserverused

without interactive routing is very low load inpact system.

-l 'SYSLOG'

Speci�es that incoming SMTP conversations are logged via syslog(3) to system

syslogd(8) server by using facility LOG_MAIL and level LOG_DEBUG messages.

-l LOGFILE

Speci�es a log�le and enables recording of incoming SMTP conversations to go there.

This can be used in parallel with -l 'SYSLOG' version!

-M SMTPmaxsize

De�nes the absolute maximum size we accept from incoming email. (Default: in�nite)

(This is a local policy issue.)

-n

Indicates the program is being run from {\em inetd(8)}.

-P postofficedir

Speci�es an alternate $POSTOFFICE/ directory.

-P port

Speci�es the TCP port to listen on instead of the default SMTP port: 25.

-R routerpath

Speci�es an alternate router(8) program to use for address veri�cation.

-s 'strict'

This turns server protocol processing into extremely strict mode, any misplaced character

is rejected. Not very practical in real �le, but nice for protocol interoperability bakeout

testing.

-s 'strict'

Speci�es the style of address veri�cation to be performed. There are four independent

commands that can invoke some kind of address veri�cation, and four independent �ags to

control whether this should be done.

They are:

105

Chapter 17. Smtpserver Reference

f

Run �MAIL FROM� address through online router for analysis.

t

Run �RCPT TO� address through online router for analysis.

v

Enable �VRFY� command for this style selector (if con�guration �PARAM vrfycmd�

is in effect)

e

Enable �EXPN� command for this style selector (if con�guration �PARAM expncmd�

is in effect)

R

Require incoming addresses to be of fully-quali�ed domained form.

Don't use this if you want to allow non-domained addresses accepted into your server

through SMTP.

S

Allow �Sloppy� behaviour from the sending smtp clients; namely allow �MAIL

FROM:foo@bar�, that is, an addresses without mandatory (RFC-821) angle braces.

The �ags are concatenated to form the argument to the �-s� option. The default is �ve�.

-S suffixstyle

This de�nes log suf�x which can alter the default log�le name to one which splits

incoming traf�c into separate �les.

Possible values are:

'remote'

Append remote hostname to the log�le name (after a dot) so that from host

�foo.bar.edu� the log�le would be: �smtpserver.foo.bar.edu�.

'local'

Append local end reversed hostname to the log�le name (after a dot) so that in

multihomed hosts all different �hosts� have different log�les. Such does, of course,

assume that different IP addresses in the host reverse to different names.

-v

This is a �verbose� option to be used with �-i� option. This is especially for �BSMTP�

processing.

-V

prints a version message and exits.

106

Chapter 17. Smtpserver Reference

-X

This is �Xlate� option. For more info, see source �le:

�It may be necessary in some cases (e.g. in Cyrillic-language countries) to translate charset on the

messages coming from the clients with, e.g. old Eudora or other MUAs that do not correctly

support koi8-r charset. . . . �

�README.translation

17.2. Smtpserver Con�guration

If the $MAILSHARE/smtpserver.conf �le exists it is read to con�gure two kinds of things.

Speci�cally the following:

PARAM -entries

Allow server start-time parametrization of several things, including:

� system parameters

� help texts

� acceptance/rejection database de�nitions

The style (-s) options

Behaviour is based on glob patterns matching the HELO/EHLO name given by a remote client.

Lines beginning with a �#� or whitespace are ignored in the �le, and all other lines must consist

of two tokens: a shell-style (glob) pattern starting at the beginning of the line, whitespace, and a

sequence of style �ags. The �rst matching line is used.

As a special case, the �ags section may start with a �!� character in which case the remainder of

the line is a failure comment message to print at the client. This con�guration capability is

intended as a way to control misbehaving client software or mailers.

17.2.1. Smtpserver con�guration; PARAM -entries

PARAM maxsize nn

Maximum size in the number of bytes of the entire spool message containing both the transport

envelope, and the actual message. That is, if the max-size is too low, and there are a lot of

addresses, the message may entirely become undeliverable..

This sets system default value, and overrides commandline �-M� option.

PARAM max-error-recipients nn

In case the message envelope is an error envelope (MAIL FROM:<>), the don't accept more

than this many separate recipient addresses for it. The default value is 3, which should be

enough for most cases. (Some SPAMs claim to be error messages, and then provide a huge

number of recipient addresses. . . Of course as spam-spewers learn, they begin just sending

single recipients per message � less ef�cient, but working still. . .)

107

Chapter 17. Smtpserver Reference

PARAMMaxSameIpSource nn

(Effective only on daemon-mode server � not on �-i�, nor �-n� modes.) Sometimes some

systems set up multiple parallel connections to same host (qmail ones especially, not that

ZMailer has entirely clean papers on this either � at least up to 2.99.X series), we won't accept

more than this many connections from the same IP source address open in parallel.

The default value for this limit is 10.

The principal reason for this has been authors experience at nic.funet.�, where some

MS-Windows users have caused huge numbers of parallel connections to some services. So

huge, that the system did in fact run out of swap due to that, and caused all manner of other

nasty things to occur too. . . All this simply because some windows client had opened 800+

parallel sessions, and each server process consumed separate blocks of swap space. . . To avoid

the system to succumb under such an accidental denial-of-service attack at the overall system,

this parallel limit was created.

PARAM TcpRcvBufferSize nn

This sets setsockopt(SO_RCVBUF) value, in case the system default is not suitable for some

reason.

PARAM TcpXmitBufferSize nn

This sets setsockopt(SO_SNDBUF) value, in case the system default is not suitable for some

reason.

PARAM ListenQueueSize nn

This relates to newer systems where the listen(2) system call can de�ne higher limits, than

the traditional/original 5. This limit tells how many nascent TCP streams we can have in

SYN_RCVD state before the socket stops answering to incoming SYN packets requesting

opening of a connection. Such sockets have not opened suf�ciently to reach a state where

bi-directional communication has been established, thus they won't appear to accept(2) yet

for the server to pick them up!

There are entirely deliberate denial-of-service attacks based on �ooding to some server many

SYNS on which it can't send replies back (because the target machines don't have network

connectivity, for example), and thus �lling the back-queue of nascent sockets.

This can also happen accidentally, as the connectivity in between the client host, and the server

host may have a black hole into which the SYN-ACK packets disappear, and the client thus will

not be able to get the TCP startup three-way handshake completed.

Most modern systems can have this value upped to thousands to improve systems resiliency

against malicious attacks, and most likely to provide complete immunity against the accidental

�attack� by the failing network routing.

Do consult your system speci�c information on how much memory each nascent (and matured)

socket will require before you commence upping this very much. You might commit heaps of

unswappable memory to useless waste.

PARAM help string

This one adds yet another string (no quotes are used) into those that are presented to the client

when it asks for �HELP� in the SMTP session.

108

Chapter 17. Smtpserver Reference

PARAM debugcmd

Enables �DEBUG� command in the server. This command turns on various trace functions which

ruin the protocol from standards compliant client, but may help interactive debuggers.

PARAM expncmd

Enables �EXPN� command in the server.

PARAM vrfycmd

Enables �VRFY� command in the server.

PARAM PolicyDB dbtype dbpath

This de�nes the database type, and �le path pre�x to the binary database containing policy

processing information. Actual binary database �le names are formed by appending type

speci�c suf�xes to the path pre�x. For example NDBM database appends �.pag� and �.dir�,

while BSD-Btree appends only �.db�. (And the latter has only one �le, while the �rst has two.)

More information below, and at newdb at Section 24.3

PARAM allowsourceroute

When present, this parameter will not convert input of form <@aa,@bb:cc@dd> into

source-route-less form of <cc@dd> Instead it carries the original source-route into the system

as is.

A possible smtpserver con�guration �le is shown in �gure Figure 17-2.

Figure 17-2. Full-featured smtpserver.conf �le example

#

{\rm{}smtpserver.conf - autogenerated edition}

#

#PARAM maxsize 10000000 # {\rm{}Same as -M -option}

#PARAM max-error-recipients 3 # {\rm{}More than this is propably SPAM!}

#PARAM MaxSameIpSource 10 # {\rm{}Max simultaneous connections from}

{\rm{}any IP source address}

#PARAM TcpRcvBufferSize 32000 # {\rm{}Should not need to set!}

#PARAM TcpXmitBufferSize 32000 # {\rm{}Should not need to set!}

#PARAM ListenQueueSize 10 # {\rm{}listen(2) parameter}

{\rm{}Enables of some commands:}

PARAM debugcmd

PARAM expncmd

PARAM vrfycmd

PARAM help ===

PARAM help This mail-server is at Yoyodyne Propulsion Inc.

PARAM help Our telephone number is: +1-234-567-8900, and

PARAM help telefax number is: +1-234-567-8999

PARAM help Our business-hours are Mon-Fri: 0800-1700 (Timezone: -0700)

PARAM help

PARAM help Questions regarding our email service should be sent via

PARAM help email to address <postmaster@OURDOMAIN>

PARAM help Reports about abuse are to be sent to: <abuse@OURDOMAIN>

PARAM help ===

{\rm{}Uncomment following for not to strip incoming addresses of format:}

109

Chapter 17. Smtpserver Reference

<@aa,@bb:cc@dd> into non-source-routed base form: <cc@dd>

#PARAM allowsourceroute

PARAM accept-percent-kludge # "localpart" can contain '%' and '!'

#PARAM reject-percent-kludge # "localpart" can't contain --"--

{\rm{}The policy database: (NOTE: See 'makedb' for its default suffixes!)}

PARAM policydb btree /opt/mail/db/smtp-policy

#

HELO/EHLO-pattern style-flags

[max loadavg]

localhost 999 ftveR

some.host.domain 999 !NO EMAIL ACCEPTED FROM YOUR MACHINE

{\rm{}If the host presents itself as: HELO [1.2.3.4], be lenient to it..}

{\rm{}The syntax below is due to these patterns being SH-GLOB patterns,}

{\rm{}where brackets are special characters.}

\[*\] 999 ve

{\rm{}Per default demant strict syntactic adherence, including fully}

{\rm{}qualified addresses for MAIL FROM, and RCPT TO. To be lenient}

{\rm{}on that detail, remove the "R" from "veR" string below:}

* 999 veR

17.3. policy-builder.sh utility

The policy database that {\em smtpserver} uses is built with {\tt policy-builder.sh} script, which

bundles together a set of policy source �les:

DB/smtp-policy.src The boilerplate

DB/localnames ('= _localnames')

DB/smtp-policy.relay ('= _full_rights')

DB/smtp-policy.mx ('relaytargets +')

DB/smtp-policy.spam ('= _bulk_mail')

At the moment, {\tt smtp-policy.spam} source is retrieved with LYNX from

the URL:

\begin{alltt}\medskip\scriptsize\medskip

http://www.webeasy.com:8080/spam/spam_download_table

\medskip\end{alltt}\medskip

however it seems there are sites out there that are spam havens, and

that serve valid spam source/responce domains, which are not registered

at that database.

{\em If you want, you can modify your {\tt smtp-policy.src} boilerplate

file as well as your installed {\tt\small policy-builder.sh} script.}

{\bf In fact you SHOULD modify both to match your environment!}

110

Chapter 17. Smtpserver Reference

Doing {\tt make install} will overwrite {\tt\small policy-builder.sh},

but not {\tt smtp-policy.src}.

Basically these various source files (if they exist) are used to

combine knowledge of valid users around us:

\begin{description}

\item[\tt localnames] \mbox{}

Who we are -- ok domains for receiving.

\item[\tt smtp-policy.relay] \mbox{}

Who can use us as outbound relay.

Use {\em\verb/[/ip.number\verb/]//maskwidth} here for

listing those senders (networks) we absolutely trust.

You may also use domains, or domain suffixes so that the IP-reversed

hostnames are accepted (but that is a it risky thing due to ease of

fakeing the reversed domain names):

\begin{alltt}\medskip\hrule\medskip

[11.22.33.00]/24

ip-reversed.host.name

.domain.suffix

\medskip\hrule\end{alltt}\medskip

Server sets its internal �always_accept� flag at the source IP tests

before it decides on what to tell to the contacting client.

The flag is not modified afterwards during the session.

Usage of domain names here is discouraged as there is no way to tell

that domain �foo.bar� here has different meaning than same domain

elsewere -- at �{\tt smtp-policy.mx}�, for example.

\item[\tt smtp-policy.mx] \mbox{}

Who really are our MX clients.

Use this when you really know them, and don't want just to trust

that if recipient has MX to you, it would be ok...

You can substitute this knowledge with a fuzzy feeling by using

�acceptifmx -� attribute at the generic boilerplate.

List here domain names.

\begin{alltt}\medskip\hrule\medskip

mx-target.dom

.mx-target.dom

\medskip\hrule\end{alltt}\medskip

You CAN also list here all POSTMASTER addresses you accept email routed to:

\begin{alltt}\medskip\hrule\medskip

postmaster@local.domain

postmaster@client.domain

\medskip\hrule\end{alltt}\medskip

these are magic addresses that email is accepted to, even when everything

111

Chapter 17. Smtpserver Reference

else is blocked.

\item[\tt smtp-policy.spam] \mbox{}

Those users, and domains that are absolutely no-no for senders,

or recipients no matter what earlier analysis has shown.

(Except for those senders that we absolutely trust..)

\begin{alltt}\medskip\hrule\medskip

user@domain

user@

domain

\medskip\hrule\end{alltt}\medskip

The �{\tt policy-builder.sh}� builds this file from external sources.

\end{description}

17.4. Relaying Control Policy Language

Policy based filter database boilerplate for smtp-server.

File: {\tt \$MAILVAR/db/smtp-policy.src}

This file is compiled into an actual database using the command:

\begin{alltt}\medskip\hrule\medskip

\$MAILBIN/policy-builder.sh

\medskip\hrule

\end{alltt}\par

The basic syntax of non-comment lines in the policy source is:

\begin{alltt}\medskip\hrule\medskip

key [attribute value]* [= _tag]

\medskip\hrule

\end{alltt}\par

There are any number of attribute-value pairs associated with the key.

There can be only one key of any kind currently active, unless �{\em makedb}�

is called with �-A� option (Append mode) in which case latter appearances

of some keys will yield catenation of of latter data into previous datasets.

(This may or may not be a good idea...)

The key can be any of following forms:

\begin{description}

\item[\rm domain, or .domain.suffix] \mbox{} \\

a domain name optionally preceded by a dot (.)

\item[\rm�user@�, or �user@domain�] \mbox{} \\

Usernames -- domainless (�user@�) or domainfull.

\item[\rm An IP address in {[}nn.nn.nn.nn{]}/prefix form] \mbox{} \\

Unspecified bits must be 0.

(Network IPv6 addresses containing IPv4-mapped addresses are translated

112

Chapter 17. Smtpserver Reference

into plain IPv4.)

\item[\rm A tag -- word begining with underscore] \mbox{} \\

An �alias� dataset entry for �=� �attribute� uses.

\end{description}

{\em attribute} and {\em value} are tokens.

They are used by {\tt policytest()} to make decisions.

The attribute scanners operate in a manner, where the first

instance of interesting attribute is the one that is used.

Thus you can construct setups which set some attribute, and

then {\em ignore} all latter instances of that same attribute

which have been pulled in via �{\em = _alias_tag}� mechanism,

for example.

In following, �understood� value is one or both of literals: �+�, �-�,

if they are listed at the definition entry.

In case only one is understood, the other one can be considered as

placeholder which stops the scanner for that attribute.

Attribute names, and understood value tokens are:

\begin{description}

\item[\tt = _any_tag] \mbox{} \\

The analysis function will descend to look up �_any_tag� from

the database, and expand its content in this place.

\item[\tt rejectnet +] \mbox{} \\

Existence of this attribute pair sets persistent session flag:

�always-reject�, which causes all �MAIL FROM� and �RCPT TO�

commands to fail until end of the session.

This is tested for at the connection start against connecting

IP address, and against IP-reversed domain name.

This is also tested against the �HELO/EHLO� supplied parameter

string.

Use of this should be limited only to addresses against which you

really have grudges.

\item[\tt freezenet +] \mbox{} \\

Existence of this attribute pair sets persistent session flag:

�always-freeze�, which will accept messages in, but all of them

are moved into �freezer� spool directory.

This is tested for at the same time as �rejectnet�.

\item[\tt rejectsource +] \mbox{} \\

Existence of this attribute pair rejects �MAIL FROM� address,

and thus all subsequent �RCPT TO� and �DATA� transactions

until new �MAIL FROM� is supplied.

\item[\tt freezesource +] \mbox{} \\

Existence of this attribute pair causes subsequently following

�DATA� phase message to be placed into �freezer� spool directory.

113

Chapter 17. Smtpserver Reference

This is tested for only at �MAIL FROM�, and subsequent �MAIL FROM�

may supply another value.

\item[\tt relaycustomer +/-] \mbox{} \\

Existence of this attribute pair is tested for at �MAIL FROM�,

and it affects subsequent �RCPT TO� address testing.

Pair �relaycustomer -� is a placeholder no-op, while

�relaycustomer +� tells to the system that it should not

test the �RCPT TO� address very deeply.

{\em Usage of this attribute is not encouraged!

Anybody could get email relayed through just by claiming

a �MAIL FROM� domain which has this attribute.}

\item[\tt relaycustnet +] \mbox{} \\

Existence of this attribute pair is tested for at the connection

start against connecting IP address, and against IP-reversed domain name.

If this pair exists, session sets persistent �always-accept� flag,

and will not do further policy analysing for the �MAIL FROM�, nor

�RCPT TO� addresses. (Except looking for valid A/MX data from the

DNS for the sender/recipient domains.)

\item[\tt fulltrustnet +] \mbox{} \\

Because the DNS lookups still done with �relaycustnet +� setting on,

a massive feed for fanout servers might become slowed down/effectively

killed, unless we use �fulltrustnet +� specification for the feeder

host. Then everything is taken in happily from that source address.

\item[\tt trustrecipients +] \mbox{} \\

This is a variant of �relaycustnet,� where �RCPT TO� addresses are

not checked at all, but �MAIL FROM� addresses are looked up from

the DNS. (Unless some other test with the �MAIL FROM� domain name

has matched before that.)

\item[\tt trust-whoson +] \mbox{} \\

If the system has been compiled with support to �{\em whoson}� services,

see file �{\em whoson-*.tar.gz}� in the �contrib/� subdirectory.

This facilitates indirectly authenticated (via POP/IMAP) SMTP message

submission for dialup-type users.

\item[\tt relaytarget +] \mbox{} \\

With this attribute pair the current �RCPT TO� address is accepted in

without further trouble. (Theory being, that keys where this attribute

pair exist are fully qualified, and valid, thus no need for DNS analysis.)

See �RCPT TO� processing algorithm for further details.

\item[\tt relaytarget -] \mbox{} \\

This attribute pair causes instant rejection of the current �RCPT TO�

address.

See �RCPT TO� processing algorithm for further details.

\item[\tt freeze +] \mbox{} \\

114

Chapter 17. Smtpserver Reference

When �RCPT TO� address test meets this attribute pair, the entire

message will be placed into �freezer� directory.

\item[\tt acceptifmx +/-] \mbox{} \\

This attribute pair is used to give fuzzy feeling in anti-relay setups

so that we don't need to list {\bf all} those target domains that we

are allowing to use ourselves as relays.

This will basically check that �RCPT TO� address has our server

as one of its MX entries.

The value (�+� or �-�) determines how �severe� the nonexistence

of MX data is. With �+� the server will yield �400� series temporary

error with implied invitation to try again, and with �-� the server will

yield �500� series permanent error.

\item[\tt acceptifdns +/-] \mbox{} \\

This attribute pair is complementary for the �acceptifmx� in sense

that it accept the recipient address in case the DNS system has any

A or MX information for it.

This attribute pair should not be used.

\item[\tt senderokwithdns +/-] \mbox{} \\

This attribute pair will do DNS analysis for �MAIL FROM� domain, and

accept it only if there exists A or MX data for the said domain.

The value (�+� or �-�) determines how �severe� the nonexistence

of DNS data is. With �+� the server will yield �400� series temporary

error with implied invitation to try again, and with �-� the server will

yield �500� series permanent error.

\item[\tt sendernorelay +] \mbox{} \\

Tested at �MAIL FROM� address domain, and affects �RCPT TO�

address domain analysis.

{\em At the moment this attribute does not make sense, don't use!}

\item[\tt test-dns-rbl +] \mbox{} \\

This attribute pair will use Paul Vixie's RBL

(HTTP://maps.vix.com/rbl/)

system to block undesired connection sources.

\item[\tt rply-dns-rbl +] \mbox{} \\

\item[\tt test-rply-dns-rbl +] \mbox{} \\

This is a �recipient selective� version of the RBL.

The first one is to be placed into the default address case

(the �[0.0.0.0]/0�), and then the latter can be used in given

destination domain(s) to test for the result of the lookup.

This allows selective usage of 'RBL' blocking via this server.

For example if you have {\tt smtp-policy.mx} file listing special

cases (opposite of your default domain address �.� values)

\begin{alltt}\medskip\hrule\medskip

fobar.com test-rply-dns-rbl + relaytarget +

barfo.dom test-rply-dns-rbl + relaytarget +

115

Chapter 17. Smtpserver Reference

\medskip\hrule\end{alltt}\medskip

The selectivity can be either by means of listing those where the test

happens, or those where it doesn't happen -- the latter means that

the default domain address (�.�) must have �test-rply-dns-rbl +� entry.

\item[\tt maxinsize nnn] \mbox{} \\

This attribute pair yields numeric limit for incoming message

size. With this you can define source specific message size

limits so that if your intranetwork has a system with lower

inbound message size, than you do, you can report this limit

at the �EHLO� responses.

Partly this is placeholder for further code with for example

source/target domain specific runtime enforced size limits.

\item[\tt maxoutsize nnn] \mbox{} \\

Placeholder for further code

\item[\tt localdomain *] \mbox{} \\

Placeholder for further code

\item[\tt message "text string in quotes"] \mbox{} \\

Placeholder for further code

\end{description}

%%

%\end{multicols}

17.4.1. Semantics

The {\tt policytest()} function is called by smtp-server to check the client

host, the sender's and recipients' addresses.

policytest() looks for the name and address of the client host

as well as full and partial user address and domain part of sender and

recipient addresses in this database.

The retrieved attributes are used to make decissions on accepting or rejecting

the incoming mail.

If looking for �foo.bar.edu� and an exact match failed, the database

looks for keys in sequence:

�.foo.bar.edu�, �.bar.edu�, �.edu�, and �.�.

The order of entries in the input file is not important, as the file is

compiled into binary database for faster lookup.

When searching for an IP address the entry with the most common (leftside)

bits is returned. So you can have a [0.0.0.0]/0 entry what specifies the

default addributes for all unlisted IP addresses. (Both IPv4 and IPv6)

`=' is a special attribute.

The notation `= _tag' means �See also at `_tag'�.

If server() doesn't find the requested attribute

of the object, it will replace object name with `_tag' and restart the search.

116

Chapter 17. Smtpserver Reference

{\Large SCRIPT REMOVED; SEE FILE smtp-policy.src}

17.5. Content Based Filtering

The ZMailer smtpserver can do also message content analysis with an external program at the end

of DATA-dot-phase, and BDAT LAST-phase (that is, when the input message is complete, and �nal

acknowledgement is expected by the email sender.)

The program becomes active if PARAM entry �content�lter� is set:

External program for received message content analysis:

#PARAM contentfilter $MAILBIN/smtp-contentfilter

The interface to the program is simple synchronous half-duplex one, smtpserver writes relative

�lepath of the message into programs stdin, ending it with a newline. The �lter programs reply must

begin with a signed integer, then whatever text is desired to give to the user.

The content�lter program is started without parameters running userid of daemon in directory

$POSTOFFICE/.

The program must silently wait for input, which is full path to the message spool �le, analyze it, and

reply with exactly one line matching rule of: �%i � � begin with signed integer, then have one or

more whitespace, then whatever �lter writer liked to tell.

General rule:

-1 negatives are condemned into rejection

0 zero is ok! gladly accepted

1 positives are sent into the freezer

The program may produce also the numeric SMTP reply codes in its response text:

-1

-1 250 2.7.1 Glad to see some spam, immediately destroyed :)

0

0 250 2.6.0 Message OK!

1

1 550 5.7.1 That is spam, rejected!

If the message has no text, some defaults are supplied. If the message text starts with numbers, it is

presumed that it contains both the SMTP reply code, and ENHANCEDSTATUSCODE before the

text. (If no ENHANCEDSTATUSCODE part is present, then some possibly senseless default is

supplied.)

Interface message text lines beginning with anything except signed integer are logged, and the

communication channel from the smtpserver to the content�lter program is closed. Interface

continues to scan things reported by the content�lter program, and if no properly formatted line

appears, default is to send the message into the freezer ("-1"); FIXME! FIXME! "-1" == Kill ???

(Copy&paste from man-page, which may have a bug in it..)

117

Chapter 17. Smtpserver Reference

118

Chapter 18. Sendmail Reference

This �sendmail� program is an emulation of the original sendmail interface. It provides all the

original options that make sense to support in the context of ZMailer. This is not intended to be the

normal user interface to mail, rather it is used by the old User Agent programs, e.g., mail(1), to

submit mail. This mechanism has been superseded by the zmailer(3) library routines as the native

submission interface (Application Program Interface) for ZMailer.

The default action is to submit the RFC822 format mail message expected on STDIN to the mailer,

with the addresses listed on the command line as recipients. If there are no recipient addresses

speci�ed on the command line, the mailer will infer them from the message header. The sender is the

account of the current userid, except for root where the preferred sender is the account of the

current login session. The message terminates when a period is seen by itself on a line, or at end of

�le on the input stream. (modulo used options.)

If the message submission fails immediately on the mail_open(3), the data on STDIN will be

appended to a ~/dead.letter �le in the submitters home directory.

Usage:

/usr/sbin/sendmail: unknown option -?

Usage: sendmail [sendmail options] [recipient addresses]

ZMailer's sendmail recognizes and implements following options:

-B bodytype - Valid values: 8BITMIME, 7BIT

-C conffile - specifies config file (meaningfull for -bt)

-E - flag 'external' source

-F 'full name' sender's full name string

-N notifyopt - Notify option(s): NEVER or a set of:

SUCCESS,DELAY,FAILURE

-P priority# - numeric priority for ZMailer router queue

pre-selection

-R returnopt - Error report return option, either of: FULL, HDRS

-U - Flag as 'user submission'

-V envidstring - XTEXT encoded ENVID string

-b? - operational mode flags

-bd - starts smtpserver in daemon mode

-bi - runs 'newaliases' command

-bm - deliver mail; always :-)

-bp - runs 'mailq' command

-bs - speak smtp; runs server in interactive mode

-bt - starts router in interactive test mode

-e* - (ignored)

-f fromaddr - sets envelope from address for the message

-i - on inputs from tty this will ignore SMTP-like

dot-EOF

-m - send a copy of the message to the sender too

(ignored)

-o* - multiple options; those not listed cause error

-oQ queuedir - defines POSTOFFICE directory for message

submission

-ob* - (ignored)

-od* - (ignored)

-oe* - (ignored)

-oi - alias of '-i' option

-or* - (ignored)

119

Chapter 18. Sendmail Reference

-p submitprotocol - value for 'with' label at 'Received:' header

-q* - queue processing commands (ignored)

-r fromaddr - (alternate for -f)

-t - scan message rfc822 headers for recipients

-v - verbose trace of processing

Parameters:

-bm

asks sendmail to deliver mail, which it does anyway. This option has no effect.

-bs

will start a SMTP server reading from STDIN. This causes the smtpserver(8) program to

be executed.

-bd

starts the router(8) and scheduler(8) programs to emulate sendmail's daemon mode. This

is not a recommended method to start these programs, instead use zmailer(1) script.

-bt

runs the router(8) in interactive mode for testing.

-bu

runs newaliases(8) to rebuild the alias �le database.

-bp

runs mailq(1) to print the mail transport queue status.

-C configfile

speci�es the router(8) con�guration �le.

-E

indicates the origin of this message is an insecure channel. This should be used when

sendmail is used to submit messages coming in from outside the local machine, to avoid

security problems during message processing. This �ag ensures the message will have no

privileges even if the current userid is �trusted�.

-f address

speci�es the sender address. This is the default originator address if there is no �From:�

headerin the message. It becomes the �Sender:� address otherwise. In either case if the

current userid is not �trusted� by the mailer, it is free to ignore both this option and any

header information to ensure properly authenticated originator information.

-F fullname

speci�es the full name of the (local) sender.

-i

tells sendmail to not use a period (�.�) on a line by itself as a message terminator, only the

end of �le will terminate the message.

120

Chapter 18. Sendmail Reference

-m

asks the mailer not to ignore the originator in the addressee list. This is default behaviour,

so this option has no effect.

-N notify

sets Delivery-Status-Noti�cation notify parameter to be: NEVER, or any combination of:

SUCCESS, FAILURE, DELAY.

-oi

is like -i.

-oQ postoffice

speci�es an alternate $POSTOFFICE/ directory.

-q

asks for queue processing. This option has no effect.

-Q retmode

sets Delivery-Status-Noti�cation parameter to be either of: FULL, HDRS.

-r address

is like -f.

-t

scans header for recipient addresses if none are speci�ed on the command line. This is also

the default behaviour, so this option has no effect.

-v

will report the progress of the message after it has been submitted. The sendmail process

will write verbose log information to the STDERR stream until the scheduler deletes the

message.

-V envid

sets Delivery-Status-Noti�cation parameter ENVID to be any arbitrary [xtext] string.

121

Chapter 18. Sendmail Reference

122

Chapter 19. Rmail Reference

The rmail is a program to process incoming UUCP mail. rmail is usually invoked by a remote

UUCP neighbour host's mailer using a command line like:

uux - -r -asender -gC thishost!rmail (recipient1) (recipient2) ...

The end result is that the remote neighbour's uuxqt(8) runs rmail on thishost with this command

line:

rmail recipient1 recipient2 ...

In both cases, a UUCP format mail message is on the standard input.

The task of rmail is to transform the trace information in the UUCP format message to the

equivalent RFC822 trace information, and to submit the message to the zmailer(1) router with the

appropriate envelope information.

The expected input format looks like:

From address3 date3 remote from host3

>From address2 date2 remote from host2

>From address1 date1 remote from host1

followed by the rest of the message. This is considered equivalent to the following (as it might

appear in a mailbox):

From host3!host2!host1!address1 date

Received: by host3 ... ; date3

Received: by host2 ... ; date2

Received: by host1 ... ; date1

In order for the mailer to process the incoming message properly, rmail must be run by a �userid�

which the router(1) will accept forged mail from. his is normally the UUCP account id.

Usage:

rmail [-d] [-h somewhere] recipient...

Parameters:

-d

turns on debugging output.

-h somewhere

will use the argument as the default remote UUCP host name to use if there is no remote

from host tag in the �rst From-space line in the message. The default value for this is

123

Chapter 19. Rmail Reference

usually somewhere or uunet (since uunet was a frequent purveyor of this protocol

violation).

124

Chapter 20. zmailer(3) Reference

Usage:

#include <stdio.h>

#include <zmailer.h>

FILE *mail_open(char *);

int mail_priority;

int mail_abort(FILE *);

int mail_close(FILE *);

int mail_close_alternate(FILE *mfp, char *where, char *suffix);

char *mail_alloc(unsigned int);

int mail_free(char *);

char *mail_host();

At linkage time use -lzmailer.

mail_open() will return a FILE * to a message �le that should be written to by the

application. This message �le contains three parts:

� the message envelope

� the message header

� the message body

The exact format of these components depend on the message protocol, which must be

speci�ed as the parameter to mail_open(). The choices are predetermined by the capabilities

of the mailer, and are de�ned in the header �le. The known possibilities are:

MSG_RFC822

this is the only format supported by default by the mailer. The message headers and body

in this format are de�ned by the IETF Request For Comments 822 and 1123. The message

envelope syntax is similar to the message header syntax.

MSG_FAX

intended for fax transmissions. (never used)

MSG_UUCP

intended for old style UUCP format message headers (never used)

MSG_X400

intended for X.400(88) messages.

125

Chapter 20. zmailer(3) Reference

The mail_open() routine will look for $FULLNAME and $PRETTYLOGIN environment

variables and translate them into message envelope data for use by the mailer if it generates a

sender address header for the message.

Note that the return value from the mail_open() routine corresponds to the return value of an

fopen(3), and similarly the return values from mail_abort() and mail_close()

correspond to the return value of fclose(3).

The mail_priority variable has a default value of 0, and is used on scanning Zmailer

con�guration variable $ROUTERDIRS, which tells alternate router directories under the

$POSTOFFICE/ directory. At value 0, $ROUTERDIRS variable is not used. At higher values,

successive directory from $ROUTERDIRS is taken. See below about Z-Environment.

The mail_close_alternate(3) can be used to send currently open message �le to some

alternate destination, and is used at smtpserver(8) to send some quick-action requests directly to

the scheduler(8).

The mail_alloc() and mail_free() routines are used to provide memory space for internal

data structures. The versions of these routines in the library simply call malloc(3) and

free(3) but an application may override them if desired.

Similarly the mail_host() routine is intended to return a unique string for each host, by

default the hostname, and this too is intended to be overridden by an application that may

already have this information available in some form.

Envelope header lines:

The message envelope headers are used to carry meta-information about the message. The goal

is to carry transport-envelope information separate from message (RFC-822) headers, and body.

At �rst the message starts with a set of envelope headers (*-pre�x denotes optional):

*external \n

*rcvdfrom %s@%s (%s) \n

*bodytype %s \n

*with %s \n

*identinfo %s \n

Either:

from <%s> \n

Or:

channel error \n

*envid %s \n

*notaryret %s \n

Then for each recipient pairs of:

*todsn [NOTIFY=...] [ORCPT=...] \n

to <%s> \n

Just before the data starts, a magic entry:

env-end \n

Then starts the message RFC-822 headers, and below it, the body.

126

Chapter 20. zmailer(3) Reference

Example:

... set up signal handlers ...

FILE *mfp = mail_open(MSG_RFC822,0);

if (mfp != NULL) {

... output the mail message to mfp ...

} else

... error handling for not being able to open the file ...

if (some application processing went wrong

|| we took an interrupt)

(void) mail_abort(mfp);

else if (mail_close(mfp) == EOF)

... error handling if something went wrong ...

Environment variables:

FULLNAME

variable de�nes textual fullname, for example: �Sample User�

PRETTYLOGIN

variable de�nes user@node format of what user wants to claim as his/her own address (it

must match those of mail router accepts.)

Z-environment variables:

POSTOFFICE

de�nes the directory where all $POSTOFFICE/ functions are. Example:

POSTOFFICE=/var/spool/postoffice/

ROUTERDIRS

de�nes a �:� separated list of alternate router directories. If these are de�ned at all, they

must exist, if alternate queueing priority mechanism is desired to be used. Example:

ROUTERDIRS=router1:router2:router3:router4

127

Chapter 20. zmailer(3) Reference

128

Chapter 21. Router Reference

The router daemon makes all decisions affecting the processing of messages in ZMailer.

A mail message is submitted by placing it in a �le in the $POSTOFFICE/router/ directory. The

router frequently scans this directory for new �les and will lock and process them as it �nds them.

The result is a message control �le that gets linked into the $POSTOFFICE/scheduler/ and

$POSTOFFICE/transport/ directories for use by the scheduler in the next step of message

processing. The original message �le is then moved to the $POSTOFFICE/queue/ directory.

The router's behaviour is controlled by a con�guration �le read at startup. It is really a zmsh(1)

script that uses facilities provided builtin to the router.

Usage:

Invoking router without any arguments will do nothing (except make it read its con�guration �le

and promptly exit). The normal startup method is to run the zmailer(1) script, as in "zmailer

router". This will start the router as a daemon and kill the previous incarnation of the router.

router [-diksSV] [-f con�g�le] [-n #routers] [-o zmsh-options] [-t trace�ag] [-L log�le] [-P

postof�ce]

Parameters:

-d

Detach and run as a daemon.

-f configfile

Overrides the default con�guration �le $MAILSHARE/router.cf.

-i

Run interactively, presenting a zmsh session with the con�guration �le preloaded.

-k

Kill the currently running router by sending it a SIGTERM signal.

-L logfile

Overrides the default log �le location $LOGDIR/router.

-n #routers

Starts the speci�ed number of parallel router processes. The default is a single router

process.

-o zmsh-options

Sets the option string passed on the internal zmsh invocation. The default is -O. Note that

the leading "-" is mandatory. See zmsh(1) (at Section 21.1.2) for the available options.

129

Chapter 21. Router Reference

-P postoffice

Speci�es an alternate $POSTOFFICE/ directory.

-S

Can be used to turn off non-serious syslogging.

-s

Turns stability-�ag off and on. Without this �ag, the search of new jobs will be done with

(sometimes) timeconsuming care of organizing the job �les into time order.

-t traceflag

Sets trace options, one per -t switch, even before the con�guration �le is loaded. This is

otherwise equivalent to the builtin trace command. The currently known options are:

assign, bind, compare, db, final, functions, matched, memory, on,

regexp, resolv, rewrite, router, and sequencer.

-V

Print version message and run interactively.

To restart a router daemon:

router -dk

To test an address, start up an interactive session:

router -i

or if the ZMailer sendmail(8) is installed:

sendmail -bt

Then just use the pre-de�ned functions.

21.1. ZMSH Script Language

zmsh is an implementation of the Bourne shell suitable for use with the ZMailer router(8) as its

con�guration �le language interpreter. It contains extensions that allow structured data (in the form

of lists) to be manipulated.

The shell supports three basic kinds of functions: Unix commands, user-de�ned functions, and

builtin commands. The latter comes in two variations: normal functions which take string arguments

and return a status code (much as an embedded Unix command would work), and list-manipulation

functions which understand list arguments and can return list arguments. The de�ned functions can

take any form of argument and return any form of value (a status code, a string, or a list).

Shell operations (pipes, backquote evaluation and substitution) will work between combinations of

builtin functions, de�ned functions, and Unix commands.

The shell precompiles its input to a (possibly optimized) byte-code form, which is then interpreted as

required. This means that the original form of the input is not kept around in-core for future

130

Chapter 21. Router Reference

reference. If the input is an included �le, the shell will try to save the byte-code form in a .fc �le

associated with the input �le. For example, if input is from file.cf, the shell will try to create

fc/file.fc and then file.fc. These �les will in turn be searched for and loaded (after a

consistency check) whenever a .cf �le is included.

The effects of input and output redirections are predicted prior to the execution of a command and its

I/O setup.

21.1.1. ZMSH Usage:

zmsh [-CILOPRSYaefhinstuvx] [-c command] [script ...]

21.1.2. ZMSH Parameters:

-c command

Run the given argument as a shell command script.

-a

Automatically export new or changed shell variables.

-e

Exit on non-zero status return of any command.

-f

Disables �lename generation.

-h

Hash and cache the location of Unix commands. The option is set by default.

-i

This shell is interactive, meaning prompts are printed when ready for more input, SIGTERM

signal is ignored, and the shell does not exit easily. This �ag is automatically set if stdin and

stderr are both attached to a /dev/tty.

-n

Read commands but do not execute them.

-s

Read commands from stdin. If there are non-option arguments to the shell, the �rst of these

will be interpreted as a shell script to open on stdin, and the rest as arguments to the script.

-t

Exit after running one command.

131

Chapter 21. Router Reference

-u

Unset variables produce an error on substitution.

-v

Print shell input as it is read.

-x

Print commands as they are executed.

21.1.3. ZMSH Debug options:

-C

Print code generation output onto stdout. If this option is doubled, the non-optimized code is

printed out instead.

-I

Print runtime interpreter activity onto /dev/tty.

-L

Print lexer output onto stdout.

-O

Optimize the compiled script. If this option is doubled, the optimized code is also printed out.

-P

Print parser output (S/SL trace output) onto stdout.

-R

Print I/O actions onto /dev/tty.

-S

Print scanner output (token assembly) onto stdout.

-Y

Open /dev/tty for internal debugging use.

21.2. Con�guration Script Writing Rules

Text to be inserted here.

132

Chapter 21. Router Reference

21.3. Script Security Issues

Text to be inserted here.

21.4. Router Script Well Known Entrypoints

This section describes the router internal functions used as entrypoints by various uses inside and

outside the router program.

21.4.1. The process() function

FIXME! WRITEME!

21.4.2. The router() function

FIXME! WRITEME!

21.4.3. The crossbar() function

FIXME! WRITEME!

21.4.4. The server() function

FIXME! WRITEME!

21.5. Script Language Internal Functions

This section describes the router internal functions.

FIXME! FIXME! some internal functions are missing from this listing!

21.5.1. ":" (doublecolon)

Syntax:

: <SPC> anything else forming a command pipeline

Description:

none

133

Chapter 21. Router Reference

Return Values:

0

Options:

none

Notes:

none

21.5.2. ".", "include"

Syntax:

. scriptfilename

Alternate syntax:

include scriptfilename

Return Values:

Exit status of script evaluation, or speci�cally:

1

File not found, or not fstat:able.

2

Internal loadeval() didn't yield same result as fstat:ed �le size is.

64

Usage: Not exactly one parameter, or it is a void string.

Options:

none

Notes:

This puts the running script to read more script from given �lename.

134

Chapter 21. Router Reference

21.5.3. "[", "test"

Syntax:

[test parameters]

Alternate syntax:

test test parameters

Return Values:

1

True.

0

False.

-1

Error.

Options:

� File testing unary pre�x functions:

-b file

True if �le exists and is block special.

-c file

True if �le exists and is character special.

-d file

True if �le exists and is a directory.

-f file

True if �le exists and is a regular �le.

-g file

True if �le exists and is set-group-id.

-k file

True if �le has its "sticky" bit set.

135

Chapter 21. Router Reference

-p file

True if �le exists and is a named pipe.

-r file

True if �le exists and is readable.

-s file

True if �le exists and has a size greater than zero.

-t [fd]

True if fd is opened on a terminal. If fd is omitted, it defaults to 1 (standard output).

-u file

True if �le exists and its set-user-id bit is set.

-w file

True if �le exists and is writable.

-x file

True if �le exists and is executable.

� String testing binary functions:

str1 = str2

True if the strings are equal.

The "str1" must not begin with a hyphen "-" character! (Actually they must not be any

of the magic pre�x-, or in�x keyword operators, nor "(", "!", or ")".)

Suggested test setup:

["x$varname" = "xliteral"] ...

str1 != str2

True if the strings are not equal.

The "str1" must not begin with a hyphen "-" character! (Actually they must not be any

of the magic pre�x-, or in�x keyword operators, nor "(", "!", or ")".)

Suggested test setup:

["x$varname" != "xliteral"] ...

� Integer value testing binary functions:

iexpr -eq iexpr

True if integer values are equal.

The iexpr intermediate products are strings for the purposes of this scanners input, but

then they are internally treated as system local "integer" datatype.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

136

Chapter 21. Router Reference

iexpr -ne iexpr

True if integer values are not equal.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

iexpr -gt iexpr

True if integer value1 is greater than integer value2.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

iexpr -ge iexpr

True if integer value1 is greater or equal than integer value2.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

iexpr -lt iexpr

True if integer value1 is less than integer value2.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

iexpr -le iexpr

True if integer value1 is less or equal than integer value2.

The second iexpr can be a pair of: "-l string-expr" which is evaluated as length of that

string-expr.

� File comparison binary functions:

file1 -nt file2

True if �le1's mtime is newer than �le2's.

Filenames are best to be either absolute paths (begins with "/"), or dot-relative (begins

with "./" pair). Unquali�ed names are hazardous, e.g. "-�le-name-".

file1 -ot file2

True if �le1's mtime is older than �le2's. (See comment above.)

file1 -ef file2

True if both �les have same inode, and device. (See comment above.)

� Logical functions:

! expr

Unary NOT

expr -a expr

Binary AND

137

Chapter 21. Router Reference

expr -o expr

Binary OR

(expr)

Parenthesis

Notes:

This is basically the shell "[" a.k.a. "test" program.

Do note that unlike more usual bourne-shells, this does not short-circuit logical evaluations, e.g.

falseness of the left side of an AND does not eliminate evaluation of the right side!

Usual "test" precautions with things like parameter data pre�xing with some character so that

it will not become treated as one of the control options.

Not:

["$(funcname ...)"]

["$varname" = "value"]

Ok:

["z$(funcname ...)"]

["z$varname" = "zvalue"]

21.5.4. attributes

Syntax:

attributes object-reference

Return Values:

The property list symbol (4th) component of an address quad.

Options:

none

Notes:

none

21.5.5. basename

Syntax:

basename pathname [suffix]

138

Chapter 21. Router Reference

Return Values:

0

ok, result string to stdout.

1

Error.

Options:

If a suf�x is given and matches the �lename, the suf�x too is stripped from the �lename.

There are no "-"-type options.

Notes:

Prints the base �lename of the pathname.

21.5.6. break

Syntax:

while ...

do

...

break

...

done

case ...

...

break

...

esac

Return Values:

1

Options:

none

Notes:

none

139

Chapter 21. Router Reference

21.5.7. builtin

Syntax:

NOT IMPLEMENTED!

builtin {builtin command name, and its params}

Return Values:

0

Options:

none

Notes:

NOT IMPLEMENTED!

Ensures that named command is builtin within the scheduler, and not a) external, b) script based.

21.5.8. car

Syntax:

car object-reference

Return Values:

Pointer to copied lisp-object of object-reference's car operation.

Options:

none

Notes:

This command is synonymous to the channel (at Section 21.5.12), and first (at Section

21.5.25) functions.

This version name is for die-hard LISP fans ;-)

140

Chapter 21. Router Reference

21.5.9. cat

Syntax:

cat filenames...

Return Values:

Output into stdout, which can be piped ZMailer router script internally to next receiver in a

pipeline.

Options:

none

Notes:

The �lenames to be "cat:ed" together need to be regular �les.

21.5.10. cd

Syntax:

cd [directory]

Return Values:

0

cd successful.

1

Error, can't �nd $HOME environment variable.

1

Error, internal chdir(2) call failed. The stderr gets an error string.

64

Bad parameters (too many). (Usage.)

Options:

none

Notes:

none

141

Chapter 21. Router Reference

21.5.11. cdr

Syntax:

cdr object-reference

Return Values:

Pointer to copied lisp-object of object-reference's cdr operation.

Options:

none

Notes:

This command is synonymous to the rest function (at Section 21.5.51).

This version name is for die-hard LISP fans ;-)

21.5.12. channel

Syntax:

channel object-reference

Return Values:

The channel (1st) component of an address quad.

Options:

none

Notes:

The car (at Section 21.5.8), and first (at Section 21.5.25) functions are synonymous to this

one.

21.5.13. continue

Syntax:

continue

142

Chapter 21. Router Reference

Return Values:

1

Options:

none

Notes:

This affects control �ow by returning it into beginning of enclosing loop construction.

Usage examples:

while ...

do

if ... something ...

then

... something too ...

continue

fi

... more something ...

done

21.5.14. daemon

Syntax:

daemon

Return Values:

0

Options:

none

Notes:

Starts the router running in daemon mode, scanning the $POSTOFFICE/router/ directory

every few seconds for message �les to process. This function is invoked automatically by other

code in the router program and has no other purpose.

143

Chapter 21. Router Reference

21.5.15. db

Syntax:

db add database key value

db �ush database

db owner database

db print database

db remove database key

db count database

db toc

Return Values:

0

1

Error.

Options:

a[dd]

Add a key,value entry to the database, if possible.

f[lush]

For "incore" database this means deletion of the content, but for others this is IO buffer

�ush (in case of modi�cations.)

o[wner]

Print the account name of the owner of the database, if possible. This is usually determined

by the �les associated with the database.

p[rint]

Print all entries of the database, if possible.

c[ount]

Iterate thru the database and count entries in there.

r[emove]

Remove a key entry from the database, if possible.

144

Chapter 21. Router Reference

t[oc]

Print a table of de�ned relations and their associated information. This table has �ve

columns, in order:

� the name of the relation

� its type and subtype

� cache entries and maximum cache size

� �ags

� and associated �les

See the relation function for more information. (Section 21.5.50)

Notes:

DB type add �ush owner print remove count

incore yes yes yes yes yes yes

header yes yes yes yes yes yes

ordered no yes yes yes no yes

unordered yes yes yes yes yes yes

hosts�le no no no yes no no

bind no no no no no no

ndbm yes yes yes yes yes yes

gdbm yes yes yes yes yes yes

dbm yes yes yes yes yes yes

yp (NIS) no no yes yes yes no

bhash yes yes yes yes yes yes

btree yes yes yes yes yes yes

ldap no no yes no no no

selfmatch no no no yes no yes

21.5.16. dblookup

Syntax:

Does lookup via relation de�ned dblookup vector:

dblookup key [[-: defaultkey] -- %subst1 %subst2 ... %subst9]

dblookup key [[-: defaultkey] -- %subst2 %subst2 ... %subst9]

The latter form is for databases which have any driver routine in use!

145

Chapter 21. Router Reference

Return Values:

cell

Lookup result

NULL

Lookup failed, variable $defer may be set if the reason is considered temporary and thus

solvable latter.

Options:

The '-:' does supply the "�nal case" lookup key in cases where various domain shortening

lookups reach their end (and have the builtin ultimate default lookup of ".").

relation -lm%:t $DBTYPE -f $MAILVAR/db/routes$DBEXT routesdb

...

a=$(routesdb $lookupkey -: .:ERROR -- $subst1 $subst2)

With those things the "routes" database can now contain data like:

.:ERROR smtp!

cust.1 smtp!%0

cust.2 smtp!%0!%1

With "subst*" values below, results would be:

subst1="foo1"

subst2="foo2"

smtp!

smtp!foo1

smtp!foo1!foo2

respectively.

Note: The %subst things are used only if the relation de�nition has -% option �ag set!

Notes:

The access function to the database facilities in the router.

FIXME! Notes about %[0-9] substitution rules, and their controls. (That is: relation's -%

option! Section 21.5.50)

A complete example of "-:" usage from p-routes.cf:

routes_neighbour (domain, address, A) {

local tmp

We have Alternate default-lookup for cases of locally generated

ERROR MESSAGES -- for case where the dot (.) leads to error!

and we want to reply with DIFFERENT address, thus: '.:ERROR' key.

$(iserrormsg) &&

tmp=$(routesdb "$domain" -: '.:ERROR') &&

tmp=$(routes_spec "$tmp" "$address" $A) &&

returns $tmp

tmp=$(routesdb "$domain") &&

tmp=$(routes_spec "$tmp" "$address" $A) &&

146

Chapter 21. Router Reference

returns $tmp

#| The routes_spec function interprets the return value from the

#| routesdb lookup.

return 1

}

21.5.17. echo

Syntax:

echo [-n] [-- string-expressions...]

Return Values:

0

Options:

-n

Don't print newline at end of string.

--

End the option set, use this if there is even a small change of starting the the data with the

hyphen character.

Notes:

none

21.5.18. elements

Syntax:

elements lisp-object

Return Values:

lisp-object

147

Chapter 21. Router Reference

Options:

none

Notes:

This does a side-effect on input list, which is need in "for" loops:

for loopvar in $(elements $listvar)

do

...

done

21.5.19. envars

Syntax:

envars

Return Values:

0

Options:

none

Notes:

A debug tool to print internal variable tree.

21.5.20. erraddron

Syntax:

erraddron [file]

Return Values:

0

Successfull operation.

148

Chapter 21. Router Reference

64

Wrong usage of arguments.

Options:

Optional �lename.

Notes:

Without a �lename this dissociates the possible pre-existing logging �le de�nition.

With a �lename option this speci�es a �lename into which the router appends all address

parsing error messages. This is primarily for curious postmasters or other collectors of address

trivia.

This is a debug tool; usage examples:

erraddron $POSTOFFICE/postman/ERRADDRLOG

erraddron

21.5.21. eval

Syntax:

eval expression

Return Values:

status

Options:

none

Notes:

This is the generic workhorse for self-modifying code execution within the zmsh, it creates the

workhorse of following code-fragment:

Usage: newattribute <oldattribute> <key1> <value1> [<key2> <value2>] ...

#

Returns a new attribute list symbol with the <keyN> <valueN>

attributes added to the contents of the <oldattribute> list.

newattribute (oldattribute) {

local a null value

a=$(gensym)

eval $a=\$$oldattribute

while ["$#" != 0];

do

lreplace $a "$1" "$2"

shift ; shift

done

echo -- "$a"

149

Chapter 21. Router Reference

}

21.5.22. exit

Syntax:

exit

Return Values:

does not return, does exit(2) for the shell/router..

Options:

none

Notes:

Exit from the shell/router with exit code.

21.5.23. export

Syntax:

export [variable-name...]

Return Values:

0

??? FIXME

Options:

none

Notes:

Exports variable name(s). If no variables are given, export prints a list of which variables have

been exported.

150

Chapter 21. Router Reference

21.5.24. filepriv

Syntax:

�lepriv file [uid]

Return Values:

0

??? FIXME

1

Error.

Options:

none

Notes:

Prints the numeric user id of the least privileged account that can modify the speci�ed �le.

This is determined by an approximation that pessimistically assumes that any �le or directory

writable by group or others is insecure, and optimistically assumes that it is enough to check a

�le and its parent directory instead of all the way to the �lesystem root. The reason for the latter

is that if grandparent directories are insecure, the system is likely to have just as bad potential

problems as can be created by using mail to run processes with forged powers (besides, doing

the full check would be quite expensive).

If a second argument is given, it is the numeric user id to assume for the �le. This means only

the parent directory will be checked for nonwritability and for having the same (or a 0) uid.

21.5.25. first

Syntax:

�rst object-reference

Return Values:

Pointer to copied lisp-object of object-reference's car operation.

Options:

none

151

Chapter 21. Router Reference

Notes:

This command is synonymous to the car (at Section 21.5.8), and channel (at Section 21.5.12)

commands.

21.5.26. gensym

Syntax:

gensym

Return Values:

0

Options:

none

Notes:

Generates and prints a new symbol name in the sequence g0 to gN every time it is called. The

sequence is reset and any symbol values destroyed after the router has processed a message.

This function is used to generate new symbols, to hold attached address property lists, during

alias expansion.

Code-fragment showing a way how it is used inside the router scripts:

Usage: newattribute <oldattribute> <key1> <value1> [<key2> <value2>] ...

#

Returns a new attribute list symbol with the <keyN> <valueN>

attributes added to the contents of the <oldattribute> list.

newattribute (oldattribute) {

local a null value

a=$(gensym)

eval $a=\$$oldattribute

while ["$#" != 0];

do

lreplace $a "$1" "$2"

shift ; shift

done

echo -- "$a"

}

152

Chapter 21. Router Reference

21.5.27. get

Syntax:

get property-list keyname

get property-list-varname keyname

Return Values:

property-list

Options:

none

Notes:

Returns a property-list corresponding to key string:

listvar=(key1 value1 keyname value key3 value3)

result1=$(get listvar keyname)

result2=$(get $listvar keyname)

21.5.28. getopts

Syntax:

getopts optstring-name [arguments...]

Return Values:

0

success ?

1

Error.

Options:

none

Notes:

Never used inside the zmsh scripts, usefullness questionable, and usage documentation missing.

153

Chapter 21. Router Reference

21.5.29. grind

Syntax:

grind lisp-object

Return Values:

Pointer to list of varcell.

Options:

none

Notes:

This is a debug tool.

The side-effect is to output the text form of the lisp-object.

21.5.30. groupmembers

Syntax:

groupmembers groupname

Return Values:

0

Found data, side-effect is described below.

1

Didn't �nd anything. No side-effects.

64

Usage (number of arguments) is wrong.

Options:

none

Notes:

Prints the accounts that are listed as members of a group in the system groups �le, one per line.

Note that accounts with the same login group id, but that are not listed in the groups �le, will

not appear in this list.

154

Chapter 21. Router Reference

21.5.31. hash

Syntax:

hash [-r] [command names]

Return Values:

0

This value is returned always.

Options:

-r

Path is �ushed.

command names

These are looked up one by one via the PATH environment variable, and results are stored

into internal quick-access hash table.

Notes:

This is a part of the "zmsh" shell-script interpreter in good SH-tradition, but is not used in the

ZMailer router in any way.

21.5.32. homedirectory

Syntax:

homedirectory user

Return Values:

0

Found home directory, side-effect is printing of that directory into stdout, whence it may

be captured into e.g. some variable.

2

Error, no such user.

155

Chapter 21. Router Reference

3

Error, some temporary lookup failure. Also sets "$defer" variable.

64

Usage error, wrong number of arguments. (Usage.)

Options:

none

Notes:

Prints the home directory of the speci�ed user account.

21.5.33. host

Syntax:

host object-reference

Return Values:

The host (2nd) component of an address quad.

Options:

none

Notes:

none

21.5.34. hostname

Syntax:

hostname [name]

Return Values:

0

Returns always this value.

Options:

none

156

Chapter 21. Router Reference

Notes:

Sets the router's idea of the system hostname. Without an argument the name is retrieved from

the system and printed. The router has no preconceived notion of what the hostname is, so

"Message-Id:" and "Received:' headers will only be generated if a "hostname" has been set

using this function.

21.5.35. ifssplit

Syntax:

ifssplit any-string

Return Values:

split list

Options:

none

Notes:

This splits given input string per IFS environment variable, and produces a list of substrings

ready for further use.

21.5.36. lappend

Syntax:

lappend varname anyvalue

Return Values:

NULL; actually error cases output to stderr, all others are handled silently.

Options:

none

Notes:

This appends content of list object (anyvalue) to named varname variable:

#

From aliases.cf of system standard scripts.

#

maprrouter (attribute, localpart, origaddr, plustail, domain) {

local shh al

157

Chapter 21. Router Reference

al=()

while read address

do

case "$address" in

") shh=(((error expansion "$localpart")))

lappend al $shh

continue

;;

esac

defer="

shh=$(rrouter "$address" "$origaddr" $attribute \

"$plustail" "$domain")

[-n "$defer"] &&

shh=(((hold "$defer" "$address" $attribute)))

defer="

lappend al $shh

done

returns $al

}

21.5.37. last

Syntax:

last lisp-object

Return Values:

Return a pointer to last cell of varcell's list.

Options:

none

Notes:

This is actually a unused relict from way way back..

21.5.38. length

Syntax:

length lisp-object

Return Values:

String of decimal numbers representing the number of varcell's in the lisp-object primary chain.

158

Chapter 21. Router Reference

Options:

none

Notes:

This counts the number of elements in the chain, not length of any string.

21.5.39. list

Syntax:

list objects...

Return Values:

List-wrapped lisp-object.

Options:

none

Notes:

z# list 1 2 3

(1 2 3)

z# tt=(1 2 3)

z# list $tt

((1 2 3))

z# tt=$(list 1 2 3)

z# grind $tt

(1 2 3)

21.5.40. listaddresses

Syntax:

listaddresses [-e error-address] [-E errors-to-address] [-c comment]

The stdin feeds in the list of addresses.

Return Values:

lisp-list

Successfull processing result. There can still be an error-report sent to the error-address;

see below.

159

Chapter 21. Router Reference

NULL

Error, stderr gets an error report text, and in some cases also the "-e" de�ned

error-address, and "postmaster" will get email telling of problems in the �le.

Options:

-e

Any syntax errors at list parsing will cause a report to be mailed to the given address.

-E

If an error occurs while messages are being delivered, the `errors-to-address' can be used

to force error message destination elsewhere than to the default `sender' of the message.

-c

A comment will be inserted in the error report.

Notes:

Filters an RFC822 address list on standard input to produce one normal form (no non-address

tokens) address per line on its output. This function can be used to parse the alias �le or

.forward �les or similar.

21.5.41. listexpand

Syntax:

listexpand [-c comment] [-e error-address] [-E errors-to-address] [-p

privilege-integer] [-N notary-string] $attribute $localpart $origaddr

[$plustail [$domain]]

Return Values:

lisp-list (or NULL)

Options:

-e

Any syntax errors at list parsing will cause a report to be mailed to the given address.

-E

If an error occurs while messages are being delivered, the "errors-to-address" can be used

to force error message destination elsewhere than to the default "sender" of the message.

160

Chapter 21. Router Reference

-c

A comment will be inserted in the error report.

-p

Integer privilege code for expanded addresses

-N

Notary string data, or "-" for "no DNS".

Notes:

This implements the most common pipeline where listaddresses (at Section 21.5.40) was

used with more ef�cient memory consumption handling. (System memory usage internals have

changed over the time, and now this is no longer especially great memory expenditure saver.)

The stdin will feed addresses from a �le for parsing, and parameter mapping + routing.

Comparison of previous listaddresses (at Section 21.5.40) -script implemented code, and

new one using the listexpand:

Old:

l="$preowner$(basename "$lcuser" -mod)$postowner"

nattr=$(newattribute $attr privilege $priv sender "$l")

$(zapDSNnotify $nattr delivered "$sender" "$lcuser$domain")

a=$(runas $priv cat "$a" | \

listaddresses -E "ldomain" \

-e "$l" \

-c "$a file expansion" |

maprrouter $nattr "$a" "$host" "$plustail" \

"$domain")

postzapDSNnotify a

returns $a

New:

l="$preowner$(basename "$lcuser" -mod)$postowner"

if priv=$(getpriv "664" $priv "$a" maillist) &&

nattr=$(newattribute $attr privilege $priv sender "$l") ; then

$(zapDSNnotify $nattr delivered "$sender" "$lcuser$domain")

a=$(runas $priv cat "$a" | \

listexpand -E "$l" -e "$l" -p $priv \

-c "$a file expansion" \

$nattr "$a" "$host" "" "$domain")

postzapDSNnotify a

returns $a

fi

21.5.42. login2uid

Syntax:

login2uid username

161

Chapter 21. Router Reference

Options:

none

Return Values:

"nobody-uid"

Either uid of "nobody", or no lookup match for given userid.

uid

UID of user.

Notes:

Prints the uid associated with the speci�ed account name, if any. A side-effect is to add the

GECOS name �eld of the account to the fullname in-core database, to add the login name to uid

mapping to the pwnam in-core database, and to add the uid to login name mapping to the pwuid

in-core database.

21.5.43. lreplace

Syntax1:

lreplace varname indexnum anyvalue

Syntax2:

lreplace varname fieldname anyvalue

Return Values:

none

Options:

none

Notes:

This replaces designated �eld on varname variable containing list-like data with anyvalue value.

The �eld designation can be given in numeric form, where the �eld index can be numeric (�rst

�eld is zero), or keyname on key/value pair list.

If a key is not found (with key/value pairs), then designated pair is added to the list.

z$ tt=(aa 11 bb 22 cc 33 dd 44)

z$ grind $tt

(aa 11 bb 22 cc 33 dd 44)

z$ lreplace tt bb zz

162

Chapter 21. Router Reference

z$ grind $tt

(aa 11 bb zz cc 33 dd 44)

z$ lreplace tt 0 aaa

z$ grind $tt

(aaa 11 bb 22 cc 33 dd 44)

z$ lreplace tt zz aa

z$ grind $tt

(aaa 11 bb 22 cc 33 dd 44 zz aa)

This is an example of "lreplace" use in the scripts:

Usage: newattribute <oldattribute> <key1> <value1> [<key2> <value2>] ...

#

Returns a new attribute list symbol with the <keyN> <valueN>

attributes added to the contents of the <oldattribute> list.

newattribute (oldattribute) {

local a null value

a=$(gensym)

eval $a=\$$oldattribute

while ["$#" != 0];

do

lreplace $a "$1" "$2"

shift ; shift

done

echo -- "$a"

}

A fragment of code from inside the crossbar.cf shows different usages:

....

usenet)

lreplace from 2 "$(uucproute "$(user $from)")"

tsift $(user $from) in

$hostname!.* ;;

.*

lreplace from 2 $hostname!$(user $from)

;;

tfist

newsgroup name only

lreplace to 2 "$(localpart "$(user $to)")"

;;

....

21.5.44. malcontents

Syntax:

malcontents

Return Values:

none

163

Chapter 21. Router Reference

Options:

none

Notes:

ZMSH Debugging thing.

21.5.45. printaliases

Syntax:

printaliases [-v] [-o indexoutputfile] file

Return Values:

0

1

Error.

Options:

-v

Verbose.

-o indexoutputfile

Each header line will also generate a "header TAB byteoffset" line in the index�le.

Notes:

This function was used by the "newaliases(1)" program to generate the aliases database

from a source �le.

That task has been moved into "zmailer newdb" (at Section 24.1.8) process, along with all

other router database refreshment tasks.

Reads RFC822 syntax header lines from the speci�ed �le, parses them assuming contents

must be an address list, and sorts and prints the header lines with all addresses in normal

form. Comments are allowed; they extend from the character "#" at the beginning of a line,

or after an address, to the end of line.

164

Chapter 21. Router Reference

21.5.46. process

Syntax:

process messagefile

Return Values:

0

Successfull processing.

100

File name parameter missing.

other

Return value from the underlying scripts.

Options:

none

Notes:

The protocol switch function. It is called by the "daemon" function (at Section 21.5.14) to

process a message found in the $POSTOFFICE/router/ directory.

This function will in turn call an internal protocol-speci�c function which knows the syntax and

semantics of the message �le. The current version knows about messages submitted using the

MSG_RFC822 parameter to mail_open(3). For that case, the protocol function is called

"rfc822".

router has a bit more complex directory semantics, than is stated above. See "zmailer(3)" for

details.

Although the "process" function is provided built in, it is usually overridden by a de�ned

function in the router con�guration �le. (See process.cf, and the entrypoint text at Section

21.4.1)

21.5.47. read

Syntax:

read variable...

165

Chapter 21. Router Reference

Return Values:

0

Successful read.

1

Error. (End of input)

64

Error. Missing mandatory variable name. (Usage.)

Options:

none

Notes:

The read will get one line of input, and if there are more than one variable name parameter,

split it at the whitespaces (IFS chars).

There appears to be a bug when there are less IFS separated sequences than there are varnames:

The extra varnames do get things at a bit random.. (2001-Oct-15)

If input line is zero length (or all IFS chars), the read will read another input line.

If the input line ends with character: "\" as its very last, the line gets a catenation of next input

line effectively unfolding multiline coded string.

z# echo "1 2 3 4 5" | read v1 v2

z# echo $?

0

z# echo $v1

1

z# echo $v2

2 3 4 5

z# echo "11111" | read v1 v2

z# echo $?

0

z# echo $v1

11111

z# echo $v2

11111

21.5.48. recase

Syntax:

recase [-u | -l | -p] -- string

166

Chapter 21. Router Reference

Return Values:

0

Success, stdout gets the result string.

64

Bad option. (Usage.)

Options:

--

End options.

-u

Convert into uppercase.

-l

Convert into lowercase.

-p

Prettify.

Notes:

A case-mapping function that prints the parameter string in either all-uppercase, all-lowercase,

or capitalized (pretty).

The input to be converted is expected to be single string, e.g. not multiple strings.

Due to internal use of "getopt" for parameter pickup, if there is even the slightest change that

the string begins with a hyphen (minus) character, invocation must use the -- pair to end the

options, and to protect the parameter.

Typical use in the router scripts:

lcuser="$(recase -l -- "$user")"

21.5.49. recipient

Syntax:

recipient

167

Chapter 21. Router Reference

Return Values:

1

Is a recipient address.

0

Is not.

Options:

none

Notes:

A boolean function that returns the value of the statement "executing a header rewriting

function and the address is a recipient address in a message header".

21.5.50. relation

Syntax:

Generic:

relation [-i] [-T] -t dbtype [/subtype] [-f file] [-e #] [-s #] [-:%blmnu] [-d driver] [-C

configfile] name

The separator character between "dbtype" and "subtype" can be either a comma (",") or a slash

("/"), as user wishes. In case the subtype is a �lepath (or otherwise begins with a slash), the user

propably wants to use comma to reduce confusion.

More speci�c versions:

relation -t yp,yp-mapname -f yp-domain [-e #] [-s #] [-:%blmnu] [-d driver] name

relation -t bind/query-type [-f file] [-e #] [-s #] [-:%blmnu] [-d driver] name

relation -i -t ordered,filepath2 -f filepath1 [-e #] [-s #] [-:%blmnu] [-d

driver] name

relation -i -t unordered,filepath2 -f filepath1 [-e #] [-s #] [-:%blmnu] [-d

driver] name

relation -t ordered -f filepath [-e #] [-s #] [-:%blmnu] [-d driver] name

relation -t unordered -f filepath [-e #] [-s #] [-:%blmnu] [-d driver] name

relation -t dbtype [-f file] [-e #] [-s #] [-:%blmnu] [-d driver] name

Note: "zmailer newdb" does not support "-i" option use! (FIXME! FIXME! 2001-Mar-8)

Special support for testing of presence of support for given dbtype:

relation -T -t dbtype dummy_name

Options are listed below. name is the name of the relation that is wanted to be created.

Examples:

relation -t bind,mx mxhost

168

Chapter 21. Router Reference

relation -t ordered -f $MAILVAR/db/routes routes

relation -t ordered -b -f /usr/lib/news/active.sorted newsgroups

Return Values:

0

Relation is reated successfully, however possible database access are not tried yet.

1..7

Error.

Options:

-T

Special �ag enabling script to test for given db-type:

relation -T -t btree dummy && echo "have BTREE database"

-t dbtype[,subtype]

Below is a table to option interdependencies as they apply with different database types.

Figure 21-1. relation's option interdependencies

Db-Type Subtype meaning -f option value

incore ignored ignored

header ignored ignored

selfmatch ignored ignored

hosts�le ignored ignored (?)

ordered ignored (without -i option) path-to-�le

unordered ignored (without -i option) path-to-�le

ordered path-to-�le-2 (with -i

option)

path-to-�le-1

unordered path-to-�le-2 (with -i

option)

path-to-�le-1

bind DNS-query-subtype ignored

yp YP-mapname YP-domain

ldap ignored?? path-to-cfg-�le

dbm ignored basepath-to-db-�le

ndbm ignored basepath-to-db-�le

gdbm ignored basepath-to-db-�le

btree ignored basepath-to-db-�le

bhash ignored basepath-to-db-�le

One of the known types of databases, currently:

169

Chapter 21. Router Reference

incore

A database maintained in virtual memory (using splay trees). This type should not be

used for any database that must periodically be �ushed, since all occupied memory

can be freed.

header

A special incore database type used to store RFC822 header semantics information. It

is unlikely to be used for anything else.

ordered

The -f-option de�nes the path of the �le.

A �le with key-value pairs on every line, separated by whitespace, sorted by key. (See

sort(1).)

key_at_line_start data at the same line

unordered

The -f-option de�nes the path of the �le.

A �le with key-value pairs on every line, separated by whitespace.

key_at_line_start data at the same line

ordered,path-to-file-2

The -f-option de�nes the path of the �le-1.

The version for antique "-i" mode.

unordered,path-to-file-2

The -f-option de�nes the path of the �le-1.

The version for antique "-i" mode.

hostsfile

The -f-option de�nes the path of the �le. (In theory...)

A rather theorethical database looking into hosts(5) database �le (often

/etc/hosts).

bind/query-subtype

The -f-option de�nes the path of the resolver con�guration �le. (Not implemented!)

The BIND implementation of a Domain Name System resolver. The subtype for this

type is the name of a Resource Record type in the IN class.

Supported subtypes are: A, AAAA, ANY, CNAME, MX, MXLOCAL, MXWKS,

PTR, TXT, UINFO, WKS

FIXME! FILL DETAILS! (About the return values)

ndbm

The -f-option de�nes the base path of the �les, and the NDBM appends ".pag" and

".dir" to each �le.

170

Chapter 21. Router Reference

The newer DBM as created at (I think) BSD 4.2. This is two-�le database with API

utilizing nonglobal API, that is, multiple databases can be open simultaneously. This

appends .dir and .pag to the supplied name!

Limitation: The length of key plus the length of data must not exceed 1024 bytes.

With certain kinds of alias databases this may be too low limit!

dbm

The -f-option de�nes the base path of the �les, and the DBM appends ".pag" and

".dir" to each �le.

The old ATT DBM library with even worse limitations than ndbm has. Avoid if you

can. (ZMailer can manage with this also, each lookup is done by opening the DB, and

closing immediately afterwards.)

Some versions of ATT DBM did not contain externally callable close() function!

ZMailer propably won't work at such a system anyway...

gdbm

The -f-option de�nes the path of the database �le, the GDBM does not append

anything to the name.

The GNU implementation of the new DBM library. Note: GDBM uses one �le, which

is named exactly as you parametrize it. This is unlike NDBM, which appends .dir and

.pag to the supplied name!

yp,mapname

The Network Information Service from Sun Microsystems Inc. (Later renamed to be

NIS, the still newer NIS+ is not supported).

The mapname "subtype" passes knowledge about which YP-map the query is to be

done from.

The -f-option is used to pass the YP-domain information to the interface.

btree

SleepyCat DB 1.x, 2.x, 3.x or 4.x B-Tree database

The -f-option de�nes the path of the database �le, the SleepyCat DB does not

append anything to the name. (This is true with versions 1.x, 2.x, 3.x, and 4.x.)

The -C-option de�nes SleepyCat DB environment con�guration �le, which can be

used to de�ne advanced features, mainly Concurrent Data Store function.

FIXME! FIXME! config file!

$ cat /opt/mail/db/sleepyenv.conf

#

SleepyCat DB 3/4 environment settings

#

envhome = /opt/mail/db

#tmpdir = ...

envmode = 0600

envflags = CDB, CREATE, RO

171

Chapter 21. Router Reference

bhash

SleepyCat DB 1.x, 2.x, 3.x or 4.x HASH database

The -f-option de�nes the path of the database �le, the SleepyCat DB does not

append anything to the name. (This is true with versions 1.x, 2.x, 3.x, and 4.x.)

The -C-option de�nes SleepyCat DB environment con�guration �le, which can be

used to de�ne advanced features, mainly Concurrent Data Store function.

FIXME! FIXME! config file!

$ cat /opt/mail/db/sleepyenv.conf

#

SleepyCat DB 3/4 environment settings

#

envhome = /opt/mail/db

#tmpdir = ...

envmode = 0600

envflags = CDB, CREATE, RO

selfmatch

Given address literal without wrapping square brackets, this "database" decodes the

address, and checks if presented IP address is one used by the system at the moment.

ldap

FIXME! WRITEME!

-f file

A �le associated with the database, typically the �le containing the data, or the basename

of DBM �les or something similarly relevant to the database access routine.

-e #

The default time-to-live on cached information. When the information has been in the

cache for this many seconds, it is discarded. The default is 0.

-s #

Sets the cache size to the speci�ed number. The default is usually 10, depending on the

database type.

-b

If the key exists in the database, return the key as the value. ("Boolean relation")

-i

If the key exists, its value is a byte offset into a �le named by the subtype for this database.

The value then becomes the concatenation of the data on the lines following that offset

which start with whitespace.

This was used for the aliases �le back in early 1990, and is usable only with ordered, and

unordered database types.

172

Chapter 21. Router Reference

(FIXME! IMPLEMENT? To think of it, this makes eminently sense also for dbm, and

ndbm which have data size limitations. But then, SleepyCat DB is recommended for

internal databases anyway.)

-l

Map all keys to ASCII lowercase before searching.

-m

Check for �le content modi�cation before every access. Reopen the �le when a change is

detected.

This option is used when the router should discover changes to a database underfoot so it

need not be restarted to use new data.

This is recommended on relations which use unordered, or ordered datasets (aliases,

routes, ...), and especially if the system is con�gured to use mmap(2) facility. Updating

such databases should preferably use mv command to move a new version of the database

in place of the old one.

-n

If the key exists in the database and the value is null or list, return the key as value.

Otherwise return the value retrieved, if any.

-u

Map all keys to ASCII uppercase before searching.

-d [pathalias|pathalias.nodot|longestmatch]

Speci�es a search driver that allows searching for structured keys using special knowledge.

The argument to this option must be a known driver.

FIXME! WRITEME! WRITE MORE!

-%

We shall do positional parameter substitutions ("%0" thru "%9") on database lookup result

data. [XREF??]

The zmailer newdb con�guration �le $MAILVAR/dbases.conf uses presence of "%" to

signal this aspect of relation wrapper generation. [XREF??]

-:

Actually this is ignored if present, the zmailer newdb con�guration �le

$MAILVAR/dbases.conf uses presence of ":" to signal certain aspects of relation wrapper

generation. [XREF??]

Notes:

On systems with USE_MMAP the ordered, and unordered databases are r/o mapped into memory,

and for ordered case, a special line-index is generated for speeding up the binary search.

(Makes less system calls that way.)

173

Chapter 21. Router Reference

21.5.51. rest

Syntax:

rest object-reference

Return Values:

Pointer to copied lisp-object of object-reference's cdr operation.

Options:

none

Notes:

This command is synonymous to the cdr command (at Section 21.5.11).

21.5.52. return

Syntax:

return lisp-object

Return Values:

lisp-object

The argument lisp-object contains a non ASCII digit character, or is a complex lisp-object.

string

The argument lisp-object contains a non ASCII digit character, and is a simple

string-object.

statuscode

The argument lisp-object contains a all ASCII digit characters, and is a simple

string-object.

See the Notes below about this, too.

NULL

Invalid lisp-object.

Options:

none

174

Chapter 21. Router Reference

Notes:

The system has a weird dichtomy on returning numeric vs. other results.

Presume a function call with two different possible results, failure indication, and successfull

(arbitrary) string result:

tmp=$(funcnnn args..) && returns $tmp

return $tmp # error code return!

21.5.53. returns

Syntax:

returns lisp-object

Return Values:

lisp-object

This one will always return the lisp object without interpreting possible string value to be

numeric return code.

Options:

none

Notes:

See notes of "return" above.

21.5.54. rfc822

Syntax:

rfc822 messagefile

Return Values:

status

Options:

none

Notes:

This function controls the parsing and processing of the message �le in RFC822/976/2822

format. It is called by the process function (at Section 21.5.46). .

175

Chapter 21. Router Reference

21.5.55. rfc822date

Syntax:

rfc822date

Return Values:

0

Side effect: stdout gets current time string printed in RFC822/2822 format.

Options:

none

Notes:

Prints the current time in RFC822/2822 format.

21.5.56. rfc822syntax

Syntax:

rfc822syntax address

Return Values:

0

Given input matches RFC 822/976/2822 for "route-address" syntax speci�cation.

1

Error. Given input is syntactically somehow invalid.

64

Argument count is not exactly 1. (Usage.)

Options:

none

Notes:

This is a simple interface to the address parser. If the command line argument is a syntactically

valid RFC822/976/2822 address, this command is silent and returns 0 as status. If there is a

176

Chapter 21. Router Reference

parse error, a verbose error message is printed to stdout and the function yields a non-zero

return status.

21.5.57. runas

Syntax:

runas user function [arguments...]

Return Values:

Any of the values yielded by the executed "function", or:

0

Internal evaluation of "function" did yield 0.

1

Setting target uid failed.

64

Mandatory parameters missing. (Usage.)

abort

Resetting target uid to system uid (root) failed.

Options:

none

Notes:

Changes the current effective user id of the router process to that given (which may be numeric

or an account name), then runs the speci�ed function with the speci�ed arguments, then

switches the effective user id of the process back (to root).

21.5.58. sender

Syntax:

sender

177

Chapter 21. Router Reference

Return Values:

1

Is a sender address.

0

Is not sender address.

Options:

none

Notes:

A boolean function that returns the value of the statement "executing a header rewriting

function and the address is a sender address in a message header".

21.5.59. set

Syntax:

set [-a | -e | -f | -h | -n | -t | -u | -v | -x | -L | -C | -P | -S | -k] [-] [variable]

Without parameters set prints variable values.

Return Values:

Pointer to copied structure of car operation.

Options:

-a

Automatically export changed variables.

-e

Exit on error exit status of any command.

-f

Disable �lename generation (no globbing).

-h

Hash program locations.

-n

Read commands but do not execute them.

178

Chapter 21. Router Reference

-t

Read and execute one command only.

-u

Unset variables are error on substitution.

-v

Print shell input lines as they are read.

-x

Print commands as they are executed.

-L

Trace LEXER processing (sslWalker).

-C

Print branch and emit inputs (sslWalker).

-P

Trace execution (sslWalker).

-S

Print input buffers when used (sslWalker).

-k

Not supported option.

-

Do nothing.

Notes:

none

21.5.60. shift

Syntax:

shift [number]

Return Values:

0

Success.

179

Chapter 21. Router Reference

1

Error, out of parameters to shift.

Options:

none

Notes:

Modi�es caller's argument vector by shifting left one (or speci�ed number) of argument(s) in

current ARGV.

21.5.61. sleep

Syntax:

sleep number

Return Values:

0

Did sleep a bit, does not tell is anybody interrupted the sleep.

64

Missing mandatory integer argument. (Usage.)

Options:

none

Notes:

Does not tell if the sleep has been interrupted somehow.

21.5.62. squirrel

Syntax:

squirrel [-]event

180

Chapter 21. Router Reference

Return Values:

0

1

Error.

Options:

-

Set �ag value to 0.

(none)

Set �ag value to 1.

The events are:

� breakin

� badheader

� illheader

� nochannel

� nosender

Notes:

Sets the kinds of events that cause a message to be copied into the $POSTOFFICE/postman/

directory. Whether or not a "-" is necessary for an event depends on the current state of the

event's �ag.

The usage message will indicate what to do to toggle the event �ag:

z# squirrel

Usage: squirrel [breakin | -badheader | illheader | nochannel | nosender]

21.5.63. stability

Syntax:

stability [on | off]

181

Chapter 21. Router Reference

Return Values:

0

Did the work successfully.

64

Bad parameters. (Usage.)

Options:

none

Notes:

Determines whether the router will process incoming messages in arrival order (when on), or in

random order determined by position in the router directory. The router will by default do the

�rst queue scan in stable mode, and subsequent scans in unstable mode. The name of this

command is the name for a similar characteristic of sorting algorithms.

21.5.64. "test", "["

See: "[", a.k.a. "test" at Section 21.5.3.

21.5.65. times

Syntax:

times

Return Values:

0

Prints to stdout the spent usermode time for process itself, and to all of its children.

1

Error in times(2) system call.

64

Usage error (no parameters allowed.)

Options:

none

182

Chapter 21. Router Reference

Notes:

Prints to stdout the spent usermode time for process itself, and to all of its children.

Sample output:

12m33s 22m59s

21.5.66. trace

Syntax:

trace key1 ... keyN

untrace key1 ... keyN

Enables tracing of the speci�ed items. The valid keywords are listed in the options below.

Return Values:

0

Successful setting/clearing.

64

Parameter name error. (Usage.)

Options:

all

Turns on all tracing options.

You only do this to test the I/O capabilities of your system. (rfc822, and regexp options

generate a lot of output!)

assign

Prints shell variable assignments.

bind

Prints various information from the code that calls the DNS resolver.

compare

Prints *sift statement pattern-selector comparisons.

db

Prints database lookups, including cache search and update information.

183

Chapter 21. Router Reference

except

Inverts the sense of what is being done; e.g.:

trace all except rfc822 regexp

which is (nearly) exquivalent of:

trace all

untrace rfc822 regexp

final

Prints the message envelope information after processing each message.

functions

Prints shell function calls and return values, with nesting indicated by indentation.

matched

Prints *sift statement pattern-selector matches.

memory

Prints memory allocation information after each message.

on

Same as functions -option.

regexp

Prints regular expression matching execution.

resolv

Turns on the RES_DEBUG �ag in the BIND resolver library, and prints various information

from the code that calls the DNS resolver.

rewrite

Prints the tokenized addresses sent through the message header address rewriting

functions.

router

Prints the tokenized addresses sent through the router function.

sequencer

Prints the procedural steps taken during message processing.

Notes:

Authors most common "trace" incantation has been wrapped into standard script routine:

#|

#| I kept typing in this trace command so frequently, that eventually

#| I just had to make for it into a single command... /Matti Aarnio

#|

rtrace () {

trace all except rfc822 regexp

}

184

Chapter 21. Router Reference

21.5.67. trap

Syntax:

trap [[script trap_nro] ...]

Return Values:

0

Set successfully, or displayed successfully.

Options:

none

Notes:

If no parameters are given, trap prints all known traps.

In all aspects this is quite alike any bourne-shell "trap" function.

Set, and unset a trap:

trap "db flush aliasesdb ; log flushed aliases" 16

trap "" 16

21.5.68. type

Syntax:

type [command...]

Return Values:

0

Always returns this value.

The stdout gets the report.

Options:

none

Notes:

z# type trap

185

Chapter 21. Router Reference

trap is a shell builtin

z# type foobar

foobar not found

z# foobar () {echo foo}

z# type foobar

foobar is a shell function

z# type rfc822

rfc822 is a shell builtin

z# type process

process is a shell function

z# echo $?

0

z# type no-such-thing

no-such-thing not found

z# echo $?

0

z# type

z# echo $?

0

21.5.69. uid2login

Syntax:

uid2login uid

Return Values:

0

Argument count ok, and "uid" begins with a digit.

The stdout gets the username.

64

Parameter error. (Usage.)

Options:

none

Notes:

Prints the �rst account name associated with a speci�ed numeric user id, if any, or "uid#uid"

if no account exists with that user id. It has the same side-effects as the login2uid function (at

Section 21.5.42).

186

Chapter 21. Router Reference

21.5.70. umask

Syntax:

umask [octal-number-mask]

Return Values:

0

Successfull printing of the octal value, or setting new umask(2) value.

64

Parameter error. (Usage.)

Options:

none

Notes:

Without parameters the new default mask is 077, and old is printed.

21.5.71. unset

Syntax:

unset [variable...]

Return Values:

0

Had enough parameters, executed something, and possibly complained something to

"stderr".

64

Missing mandatory (at least one) argument. (Usage.)

Options:

none

187

Chapter 21. Router Reference

Notes:

This throws away named variables from all variable scopes.

z# echo $TERM

xterm

z# unset TERM

z# echo "'$TERM'"

�

21.5.72. untrace

Syntax:

trace key1 ... keyN

untrace key1 ... keyN

Disables tracing of the speci�ed items. This is inverse of trace (at Section 21.5.66).

Return Values:

0

Successfull clearing/setting

64

Parameter name error. (Usage.)

Options:

See the trace function (at Section 21.5.66) for valid keywords.

Notes:

See the trace function (at Section 21.5.66) for valid keywords.

21.5.73. user

Syntax:

user object-reference

Return Values:

The next-address (3rd) component of and address quad.

Options:

none

188

Chapter 21. Router Reference

Notes:

This is essentially same as:

$(cdr $(cdr $(cdr $addrquad)))

21.5.74. wait

Syntax:

wait [pid]

Return Values:

Besides of the return codes of processes being waited, this can yield:

0

no more processes

64

Bad parameters. (Usage.)

Options:

none

Notes:

none

189

Chapter 21. Router Reference

190

Chapter 22. Scheduler Reference

... deeper details of internal protocols and algorithms

- Configuration Language Syntax Details (?)

- Resource Management

- What and how scheduler.auth can be tuned

- Security issues

- Diagnostics reporting, canned messages (forms/* files)

- (MAILQv1/)MAILQv2 protocol for MAILQv2 client writer

- Scheduler-TA interface

The scheduler daemon manages the delivery processing of messages in ZMailer.

The router creates message control �les in the $POSTOFFICE/transport/ directory. These refer to

the original message �les in the $POSTOFFICE/queue/ directory.

The scheduler reads each message control �le from $POSTOFFICE/transport/, translates the

contained message and destination information into internal data structures.

Based on scheduling, priority, and execution information read from a con�guration �le, the

scheduler arranges to execute Transport Agents relevant to the queued messages.

At the time scheduled for a particular transport agent invocation, the scheduler will start a transport

agent (or use one from idle-pool), and tell it one by one which message control �les to process.

When all the destination addresses in a message have been processed, the scheduler performs error

reporting tasks if any, and then deletes the message control �le in $POSTOFFICE/transport/ and

the original message �le in $POSTOFFICE/queue/.

All message delivery is actually performed by Transport Agents, which are declared in a

con�guration �le for the scheduler. Each transport agent is executed with the same current directory

as the scheduler. The scheduler-transporter interaction protocol is described later.

The standard output of each transport agent are destination address delivery reports; either successful

delivery, unsuccessful delivery, or deferral of the address. Each report uses byte offsets in the

message control �le to refer to the address. Reports may also include a comment line which will be

displayed in the reports of the scheduler.

Two types of reports are produced:

1. Error messages caused by unsuccessful delivery of a message are appended to its message

control �le. Occasionally, for example, when all addresses have been processed, the scheduler

generates an error message to the error return address of the message (usually the original

sender).

2. The scheduler binds itself to a well-known TCP/IP port (MAILQ, TCP port 174) on startup.

Any connections to this port are processed synchronously in the scheduler at points in the

execution where the state is internally consistent. The scheduler simply dumps its internal state

in a terse format to the TCP stream. It is expected that the client program will reconstruct the

data structures suf�ciently to give a user a good idea of what the scheduler thinks the world

looks like. The mailq(1) program serves this purpose.

191

Chapter 22. Scheduler Reference

Usage:

Invoking scheduler without any parameter will start it as a daemon.

scheduler [-dinvFHQSVW] [-E newentsmax] [-f con�g�le] [-l statisticslog] [-L log�le] [-N

transpmaxfno] [-p channel/host-pair] [-P postof�ce] [-q rendezvous] [-R maxforkfreq]

Parameters:

-d

run as a daemon, usually used after -v to log daemon activity in great detail.

-E newentsmax

when globbing new tasks from the directory, pick only �rst newentsmax of them, and leave

rest for a latter scan run.

-f configfile

overrides the default con�guration �le $MAILSHARE/scheduler.cf.

-F

Freeze -- don't actually run anything, just do queue scanning. (For debug purposes..)

-H -HH

Use multi-level hashing at the spool directories. This will ef�ciently reduce the lengths of

the scans at the directories to �nd some arbitrary �le in them. One �H� means single level

hashing, two �HH� mean dual level hashing. Hash is directory which name is single upper

case alphabet (A-Z).

-i

run interactively, i.e., not as a daemon.

-l statisticslog

starts the appending of delivery statistics information (ASCII form) into given �le. No

default value.

-L logfile

overrides the default log �le location $LOGDIR/scheduler.

-n

Toggles the con�guration �ag called �default_full_content�, which de�nes what will be

�DSN RET� parameter assumed value in case the originator didn't supply that parameter.

The default behaviour is similar to �RET=FULL�, while usage of this option is equivalent

of �RET=HDRS�.

This option does not override originator supplied DSN RET parameter value.

-N transmaxfno

sets how many �lehandles are allocated for the scheduler's started children (if the system

has adjustable resources.)

192

Chapter 22. Scheduler Reference

-p channel/host

A debug option for running selectively some thread under a single instance of the

scheduler.

Use this option with �-v�.

-P postoffice

speci�es an alternate $POSTOFFICE/ directory.

-q rendezvous

the rendezvous between machines without TCP/IP networking,

Scheduler andmailq(1) is done using a well-known named pipe. This option overrides the

default location for this special �le, either $RENDEZVOUS or /usr/tmp/.mailq.text.

(not used in real life; aspect of ZMailer's support for low-tech things..)

-Q

The �Q�-mode, don't output the old style data into the queue querier, only the new-style

one.

-S

Synchronous startup mode, scans all jobs at the directory before starting even the �rst

transporter.

-v

Verbose logging in interactive mode -- for debug uses.

-V

Print version, and exit

-W

Another option for debugging, delay the start of the verbose logging until after all jobs

have been scanned in, and it is time to start the transporters.

22.1. Con�guration Language

\index{{\tt scheduler.conf} file}\index{scheduler, {\tt scheduler.conf}}

The scheduler con�guration �le consists of a set of clauses.

There are two kinds of clauses:

� PARAM-entries

� Group-Clause selections

193

Chapter 22. Scheduler Reference

22.1.1. PARAM-entries

There are three kinds of PARAM entries, all of them start at the column number 0 (left edge):

#

MAILQv2 authentication database file reference:

If you define this (like the default is), and the file exists,

scheduler mailq interface goes to v2 mode.

(Nonexistence of this file A) leaves system running, B) uses MAILQv1

interface along with its security problems.)

#

PARAMauthfile = "${MAILSHARE}/scheduler.auth"

#PARAMmailqsock = "UNIX:/path/to/mailq.sock"

#PARAMmailqsock = "TCP:174"

Time for accumulating diagnostic reports for a given message, before

all said diagnostics are reported -- so that reports would carry more

than one diagnostic in case of multi-recipient messages.

#PARAMglobal-report-interval = 15m

The PARAMauth�le de�nes Scheduler's MAILQv2 authentication �le; more at Section 22.3.

The PARAMmailqsock de�nes non-standard socket for the MAILQv2, the default is �TCP:174�

meaning local host binding on wild-card address, and port 174 of TCP. Other ports and protocols can

be set. The mailq tool will not parse this �le to know where to connect.

The PARAMglobal-report-interval is how often (or infrequently) to run the scheduler's subtask of

reporting so far accumulated diagnostics. Original behaviour was to report diagnostics only when

message timed out, or last recipient was otherwise disposed of. Current method is somewhat quicker.

22.1.2. Group-Clause selection

Each clause is selected by the pattern it starts with. The patterns for the clauses are matched, in

sequence, with the channel/host string for each recipient address. When a clause pattern matches an

address, the parameters set in the clause will be applied to the scheduler's processing of that address.

If the clause speci�es a command, the clause pattern matching sequence is terminated.

This is a clause:

local/* interval=10s

expiry=3h

want 20 channel slots in case of blockage on one

maxchannel=20

want 20 thread-ring slots

maxring=20

command="mailbox -8"

A clause consists of:

� A selection pattern (in shell style) that is matched against the channel/host string for an address.

� 0 or more variable assignments or keywords (described below).

194

Chapter 22. Scheduler Reference

If the selection pattern does not contain a �/�, it is assumed to be a channel pattern and the host

pattern is assumed to be the wildcard �*�.

22.1.3. Clause components

The components of a clause are separated by whitespace. The pattern introducing a clause must start

in the �rst column of a line, and the variable assignments or keywords inside a clause must not start

in the �rst column of a line. This means a clause may be written both compactly all on one line, or

spread out with an assignment or keyword per line.

If the clause is empty (i.e., consists only of a pattern), then the contents of the next non-empty clause

will be used.

The typical con�guration �le will contain the following clauses:

� a clause matching all addresses (using the pattern �*/*�) that sets up default values.

� a clause matching the local delivery channel (usually �local�).

� a clause matching the deferred delivery channel (usually �hold�).

� a clause matching the error reporting channel (usually �error�).

� clauses speci�c to the other channels known by the router, for example, �smtp� and �uucp�.

The actual names of these channels are completely controlled by the router con�guration �le.

Empty lines, and lines whose �rst non-whitespace character is �#�, are ignored.

Variable values may be unquoted words or values or doublequoted strings. Intervals (delta time) are

speci�ed using a concatenation of: numbers suf�xed with `s', `m', `h', or `d' modi�ers designating

the number as a second, minute, hour, or day value. For example:

1h5m20s

22.1.4. Variables and keywords

The known variables and keywords, and their typical values and semantics are:

ageorder

Default is to randomize the order of tasks at the queue, when it is started, with this the order is

that of the original spool-�le MTIME. Oldest �rst.

bychannel

is a keyword (with no associated value) that tells the scheduler that the transport agent

speci�ed in the command will only process destination addresses that match the �rst destination

channel it encounters. This is automatically set when the string �$channel� occurs in the

command, but may also be speci�ed manually by this keyword. This is rarely used.

195

Chapter 22. Scheduler Reference

command="sss"

is the command line used to start a transport agent to process the address. The program

pathname is speci�ed relative to the $MAILBIN/ta/ directory.

The string �$channel� is replaced by the current matched channel, and �$host� replaced by

the current matched host, from the destination address.

It is strongly recommended that the �$host� is not to be used on a command de�nition, as it

limits the re-usability of idled transporter.

It is possible to place environment-string setting statements into the beginning of the line:

command="MALLOC_DEBUG_=1 OTHER=var cmdname cmdparams"

expiry=nn (3d)

speci�es the maximum age of an address in the scheduler queue before a repeatedly deferred

address is bounced with an expiration error. The actual report is produced when all addresses

have been processed.

group="sss" (daemon)

is the group id of a transport agent processing the address. The value is either numeric (a gid) or

a group name.

idlemax=nn (3x interval)

When a transport agent runs out of jobs, they are moved to idle pool, and if a TA spends more

than idlemax time in there, it is terminated.

interval=nn (1m)

speci�es the primary retry interval, which determines how frequently a transport agent should

be scheduled for an address. The value is a delta time speci�cation. This value, and the

retries=... value mentioned below, are combined to determine the interval between each

retry attempt.

maxchannel=nn (0)

(maxchannels=nn)

if retrying an address would cause the number of simultaneously active transport agents

processing mail for the same channel to exceed the speci�ed value, the retry is postponed. The

check is repeated frequently so the address may be retried as soon as possible after the

scheduled retry interval. If the value is 0, a value of 1000 is used instead.

maxring=nn (0)

(maxrings=nn)

Recipients are groupped into threads, and similar threads are groupped into thread-rings, where

same transport agent can be switched over from one recipient to another. This de�nes how

many transport agents can be running at any time at the ring.

maxta=nn (0)

if retrying an address would cause the number of simultaneously active transport agents to

exceed the speci�ed value, the retry is postponed. The check is repeated frequently so the

address may be retried as soon as possible after the scheduled retry interval. If the value is 0, a

value of 10001 is used instead.

196

Chapter 22. Scheduler Reference

maxthr=nn (1)

This limits the number of parallel transport agents within each thread; that is, using higher value

than default �1�

nice=nn

De�nes relative priority value for transport-agent process. Default is not to use this. Value range

in between -40 to 40.

overfeed=nnn (0)

Max number of tasks to feed from the thread to the transporter agent when feeding jobs to it.

The scheduler main-loop at the mux() is a bit sluggish, thus with this we can keep the

transporters busy.

The default is de�ned at the */* clause.

priority=nn

De�nes absolute priority value for transport-agent process. Default is not to use this. Value

range in between -20 to 20.

queueonly

a clause with queueonly �ag does not auto-start at the arrival of a message, instead it must be

started by means of smtpserver(8) command ETRN through an SMTP connection.

To have message expiration working, following additional entries are suggested:

interval=1h

retries="24"

That is, retry once in a day.

reporttimes="n n n" ()

Placeholder for DELAYED reporting mechanism.

retries="n n n" (1 1 2 3 4 8 13 21 34)

speci�es the retry interval policy of the scheduler for an address. The value must be a sequence

of positive integers, these being multiples of the primary interval before a retry is scheduled.

The scheduler starts by going through the sequence as an address is repeatedly deferred. When

the end of the sequence is reached, the scheduler will jump into the sequence at a random spot

and continue towards the end. This allows various retry strategies to be speci�ed easily:

� brute force (or "jackhammer"):

retries=0

� constant primary interval:

retries=1

� instant backoff:

retries="1 50 50 50 50 50 50 50 50 50 50 50 50"

� slow increasing (�bonacci) sequence:

retries="1 1 2 3 5 8 13 21 34"

� s-curve sequence:

retries="1 1 2 3 5 10 20 25 28 29 30"

� exponential sequence:

197

Chapter 22. Scheduler Reference

retries="1 2 4 8 16 32 64 128 256"

� etc.

skew=nn (5)

Leftover of earlier scheduler internal algorithms, does not make sense anymore.

sysnice=nn

Can be used (if desired) at the */* clause to set relative niceness for the scheduler process, and

all of its children.

syspriority=nn

Can be used (if desired) at the */* clause to set absolute priority for the scheduler process, and

all of its children.

user="sss" (root)

is the user id of a transport agent processing the address. The value is either numeric (a uid) or

an account name.

wakeuprestartonly

Start only one instance of handling processes, never mind what other settings say.

For example, this is a complete con�guration �le:

Default values

/ interval=1m expiry=3d retries="1 1 2 3 5 8 13 21 34"

maxring=0 maxta=0 skew=5 user=root group=daemon

Boilerplate parameters for local delivery and service channels

local/* interval=10s expiry=3h maxchannel=2 command=mailbox

error interval=5m maxchannel=10 command=errormail

hold/* interval=5m maxchannel=1 command=hold

Miscellaneous channels supported by router configuration

smtp/*.toronto.edu

smtp/*.utoronto.ca maxchannel=10 maxring=2

command="smtp -srl /var/log/smtp"

smtp/* maxchannel=10 maxring=5

command="smtp -esrl /var/log/smtp"

uucp/* maxchannel=5 command="sm -c $channel uucp"

The �rst clause (�*/*�) sets up default values for all addresses. There is no command speci�cation,

so clause matching will continue after address have picked up the parameters set here.

The third clause (�error�) has an implicit host wildcard of `*', so it would match the same as

specifying �error/*� would have.

The �fth clause (�smtp/*.toronto.edu�) has no further components so it selects the components of the

following non-empty clause (the sixth).

Both the �fth and sixth clauses are speci�c to address destinations within the TORONTO.EDU and

UTORONTO.CA organization (the two are parallel domains). At most 10 deliveries to the smtp

channel may be concurrently active, and at most 2 for all possible hosts within TORONTO.EDU. If

�$host� is mentioned in the command speci�cation, the transport agent will only be told about the

198

Chapter 22. Scheduler Reference

message control �les that indicate SMTP delivery to a particular host. The actual host is picked at

random from the current choices, to avoid systematic errors leading to a deadlock of any queue.

22.2. Resource Management

For resource management there are following con�guration attributes:

maxta=nn

Max number of transporter processes under the scheduler.

maxchannel=nn

Max number of processes with this same �channel�.

maxring=nn

Max number of processes with this set of threads.

maxthr=nn

Max number of processes at any given thread in this set of threads.

idlemax=time

How long the non-active (idle) transporter processes are allowed to keep around.

overfeed=nnn

Max number of tasks to feed from the thread to the transporter agent when feeding jobs to it.

The scheduler main-loop at the mux() is a bit sluggish, thus with this we can keep the

transporters busy.

22.3. scheduler.auth �le

The �le whose default boilerplate is shown at Figure 22-1 is able to control what kind of things (and

who, of those who know shared secrets) can ask the scheduler to do via the so called �MAILQv2�

protocol.

Figure 22-1. Sample of �scheduler.auth� �le

#

APOP-like authentication control file for the ZMailer scheduler.

#

Fields are double-colon (':') separated, and are:

- Username

- PLAINTEXT PASSWORD (which must not have double-colon in it!)

- Enabled attributes (tokens, space separated)

- Addresses in brackets plus netmask widths: [1.2.3.4]/32

#

Same userid CAN appear multiple times, parsing will pick the first

instance of it which has matching IP address set

199

Chapter 22. Scheduler Reference

#

The default-account for 'mailq' is 'nobody' with password 'nobody'.

Third field is at the moment a WORK IN PROGRESS!

#

SECURITY NOTE:

OWNER: root

PROTECTION: 0600

#

Attribute tokens:

ALL well, a wild-card enabling everything

SNMP "SHOW SNMP"

QQ "SHOW QUEUE SHORT"

TT "SHOW QUEUE THREADS", "SHOW THREAD channel/host"

ETRN "START THREAD channel host"

KILL "KILL THREAD channel host", "KILL MSG spoolid"

#

- "nobody" via loopback gets different treatment from

"nobody" from anywhere else.

#

nobody:nobody:SNMP QQ TT ETRN: [127.0.0.0]/8 [ipv6.0::1]/128

nobody:nobody:SNMP ETRN: [0.0.0.0]/0 [ipv6.0::0]/0

#watcher:zzzzz:SNMP QQ TT ETRN: [127.0.0.0]/8 [192.168.0.1]/32

#root:zzzzzzz:ALL: [127.0.0.0]/8 [192.168.0.2]/32

22.4. mailq protocol v.1

FIXME! FIXME!

Upon accepting a TCP connection on the MAILQ port (TCP port 174), the scheduler dumps data to

the TCP stream in the following format and immediately closes the connection.

The TCP stream syntax is:

version id\n

data in id-dependent format<close>

The �rst line (all bytes up to an ASCII LF character, octal 12) is used to identify the syntax of all

bytes fol- lowing the line terminator LF. The �rst 8 characters of the �rst line are �version� as a

check that this is indeed a MAILQ port server that has been reached, the remaining bytes are the real

data format identi�cation. The data is interpreted according to that format until the terminating

connection close.

Format identi�ers should be registered with the author. The only one currently de�ned is �zmailer

1.0�. For that data format, the syntax of the data following the �rst LF is:

Vertices:\n

(<key>:\t><msg-file>\t><n-addrs>; <off1>(,<offN>)*\t>[#<text>]\n)*

(Channels:\n

(<word>:\t>(><key>)+\n)+

Hosts:\n

(<word>:\t>(><key>)+\n)+)?

Where:

200

Chapter 22. Scheduler Reference

\n

is an ASCII linefeed

\t

is an ASCII tab

key

is an unsigned decimal number

msg-file

is a contiguous string (it is the message �le name relative to a known directory)

n-addrs

is an unsigned decimal number (number of addresses)

off1...offN

are unsigned decimal numbers (address byte offsets)

text

is a string not containing an ASCII linefeed (status message)

word

is a contiguous string (a �contiguous string� is a sequence of printable non-space characters

For example, here is sample output from connecting to the MAILQ port:

version zmailer 1.0

Vertices:

311424:37141; 116

311680:64722; 151,331#128.100.8.4: Null read! (will retry)

312192:63471; 152#128.89.0.93: connect: Connection timed out (will retry)

Channels:

smtp:>311424>311680>312192

Hosts:

scg.toronto.edu:>311424

mv04.ecf.toronto.edu:>311680

relay1.cs.net:>312192

This is suf�cient information to be able to reconstruct the transport queues as seen by the scheduler

process, and to �nd more information than what is shown here by actually looking up the message

control and data �les referred to.

22.5. mailq protocol v.2

FIXME! FIXME!

201

Chapter 22. Scheduler Reference

22.6. Transport Agent Interface Protocol

The transport agent interface follows a master-slave model, where the TA informs the scheduler that

it is ready for the work, and then the scheduler sends it one job description, and waits for diagnistics.

Once the job is �nished, the TA noti�es the scheduler that it is ready for a new job.

A short sample session looks like this:

(start the transport agent)

#hungry --> (TA to scheduler)

spoolid \t hostspec <-- (scheduler to TA)

diagnostics --> (TA to scheduler)

#hungry --> (TA to scheduler)

...

Normal diagnostic output is of the form:

id / offset \t notarydata \t status message

where:

id

is the inode number of the message �le,

offset

is a byte offset within its control �le where the address being reported on is kept,

notarydata

is a Ctrl-A separated tuple is delivery-status-noti�cation information for the message,

status

is one of:ok, ok2, ok3, error, error2, deferred, retryat

message

is descriptive text associated with the report. The text is terminated by a linefeed.

Any other format (as might be produced by subprocesses) is passed to standard output for logging in

the scheduler log. The retryat response will assume the �rst word of the text is a numeric parameter,

either an incremental time in seconds if pre�xed by �+�, or otherwise an absolute time in seconds

since UNIX epoch.

The exit status is a code from <sysexits.h>.

22.7. Canned (Error) Message Files

FIXME! TEXT TO BE INSERTED HERE.

202

Chapter 22. Scheduler Reference

22.8. Security Issues

FIXME! TEXT TO BE INSERTED HERE.

Notes

1. The maximum number of supported TA's is actually probed by the scheduler at its startup;

procedure is:

1. Ask system for maximum number of �le descriptors the scheduler's child can have.

2. Substract �30� from resulting count.

3. If child communication channel needs two �le descriptors (no full-duplex pipe, e.g.

socketpair() available), divide the leftover count by two.

4. Result is the maximum number of TAs which document elsewere refers as �1000�.

203

Chapter 22. Scheduler Reference

204

Chapter 23. Transport Agents References

The delivery agent programs normally form the �nal stage of message delivery.

These programs vary in function and facilities based on what they are doing to the messages, and

what kind of channels they handle.

23.1. mailbox

- All options

- Internal Logic

- Tuning issues

- Customizability

- Logging ? (or move that to ADM?)

The mailbox is a ZMailer transport agent which is usually only run by the scheduler(8) program to

deliver mail to local user mailbox �les. The mailbox program must be run with root privileges and

invoked with the same current directory as the scheduler, namely: $POSTOFFICE/transport/.

Recipient addresses are processed as follows:

� Strip doublequotes around the address, if any.

� Strip pre�xing backslashes, if any.

� If the address starts with a �|�, the rest of the recipient address string is interpreted as a shell

command to be run.

� If the address starts with a �/�, the recipient address is a �lename to append the message to.

� Otherwise the recipient address must be a local user id.

� If user is not found, and the �rst character of the address is a capital letter, the entire address is

folded to lowercase and the user lookup is retried.

If delivering to a user mailbox ($MAILBOX/userid) which does not exist, mailbox will try to create

it. If the $MAILBOX/ directory is mounted from a remote system this will succeed if the directory is

group writable.

Some sanity checks are done on deliveries to �les and mailboxes:

� The �le being delivered to must have one link only, and must be either �/dev/null� or a regular

�le.

� The �le lock must be held. (See below for a chapter about locks.)

There is a further sanity check on mailbox deliveries, namely if the mailbox is not empty the

mailbox program will enforce 2 newlines as a separator before the message to be delivered. This

guarantees that User Agents, likeMail(1), can �nd the about-to-be delivered message even if the

current contents of the mailbox is corrupt.

When delivering to a process (by starting a Bourne shell to execute a speci�ed command line), the

environment is set up to contain $PATH, $SHELL, $HOME, $USER, $SENDER, $UID

205

Chapter 23. Transport Agents References

environment variables. The $HOME and $USER values are the recipient user's home directory and

login id respectively. The $SENDER value is the sender address for the message (as it would appear

in a �From �-line), and the UID value is the owner id of the process. The SIGINT and SIGHUP

signals are ignored, but SIGTERM is treated normally. If the process dumps core, it will be retried

later. Otherwise any non-zero exit status is taken as a permanent failure, and will result in an error

message back to the sender. The actual data delivered to a �le, mailbox, or process are identical. It

consists of the concationation of a UUCP style separator line, the message header speci�ed in the

message control �le, and the message body from the original message �le. The separator line starts

with �From � and is followed by the sender address and a timestamp.

After all deliveries and just before exiting, the mailbox process will poke comsat(8C) in case

recipients have turned on biff(1). The program may be compiled to look in the rwho �les on the

system for recipient names logged onto neighbouring hosts, in which case the comsat on the remote

host will be poked. Even if this compile-time option is enabled, this will only be done for users that

have a �.rbiff� �le in their home directory. (Unless an �-DRBIFF_ALWAYS� compile option is

used.)

Usage:

mailbox [-8] [-M] [-c channel] [-h localpart] [-l logfile] [-VabrH]

Parameters:

-c "channel"

speci�es which channel name should be keyed on. The default is "local".

-h "localpart"

speci�es which of the possible multiple recipients is to be picked this time. Default is

�none�, which selects all local channel recipients, however when the routing is done with

scripts storing some tokens (other than �-�) into the �host�-part, it is possible to process

�host-wise�, i.e. so that each user has his or her own lock-state, and not just everybody

hang on the same lock(s)...

-l "logfile"

speci�es a log�le. Each entry is a line containing message id, pre-existing mailbox size in

bytes, number of bytes appended, and the �le name or command line delivered to.

-V

prints a version message and exits.

-a

the access time on mailbox �les is, by default, preserved across delivery, so that programs

such as login(1) can determine, if new mail has arrived. This option disables the above

action.

-b

disables biff noti�cation.

206

Chapter 23. Transport Agents References

-r

disables remote biff noti�cation (if supported).

-8

enables the MIME-QP-decoder to decode incoming MIME-email with Quoted-Printable

encoded characters.

-M

enables the creation of MMDF-style mail-folder in the incoming mail folder. The default is

�classic� UNIX-style folder.

Interface:

As with all transport agents, the program reads relative pathnames of message control �les from

standard input (terminated with two linefeeds), and produces diagnostic output on the standard

output. Normal diagnostic output is of the form:

id/offset<TAB>notify-data<TAB>status message

where id is the inode number of the message �le, offset is a byte offset within its control �le

where the address being reported on is kept, status is one of ok, error, or deferred, and the

message is descriptive text associated with the report. The text is terminated by a linefeed. Any

other format (as might be produced by subprocesses) is passed to standard output for logging in

the scheduler log. The exit status is a code from <sysexits.h>.

Locks:

The locking scheme used on the system is con�gurable at the runtime, and has separate

parameters for mailboxes and �les. The data is con�gurable with zenv variable $MBOXLOCKS in

which the following characters have the meanings:

:

Separates mailbox locks, and �le-locks at the string. The left side has mailbox locks, and

the right side has locks for other regular �les. (Files with explicit paths de�ned.)

.

For mailboxes only: Does �dotlock� (userid.lock), or (on Sun Solaris) the maillock()

mechanism.

F

If the system has flock() system call, uses it to lock the entire �le. (Ignored on

systemswithout flock())

L

If the system has lockf() system call, uses it to lock the entire �le. (Ignored on systems

without lockf())

Locks are acquired in the same order as the key characters are listed.

The default for lockf() capable systems is: MBOXLOCKS=".L:L".

You can choose insane combinations of lock mechanisms, which on some systems cause locks

to fail always, like on Linux-2.0 series where programs must not use both lockf() and

207

Chapter 23. Transport Agents References

flock() locks. It is extremely important that selected locking methods are consistent

throughout the system with all programs trying to acquire locks on mail spools.

Environment:

The default location for user mailbox �les is currently /var/mail/. This may be modi�ed by

setting the variable $MAILBOX in /etc/zmailer.conf to the directory containing user

mailbox �les, for example /usr/spool/mail/. This is best done in the ZMailer Con�g �le.

The variable $MBOXLOCKS is used to de�ne locking schemes used for mailbox spool �les, and

separately for other regular �les.

Security:

Like all parts of ZMailer, the mailbox chooses to err on the overly cautious side. In thecase of

pipes being run under the mailbox, the program in the pipe is started through /bin/sh with

severely sanitized environment variables, and with only the �le descriptors STDIN, STDOUT,

and STDERR. Programs are refused from running, if address analysis has found suspicuous data;

external messages cannot directly run programs, nor those addresses that have had a security

breach detected during ~/.forward- or other aliasing analysis. (Same applies also with

writing into explicitely named �les.)

The pipe subprogram is run with user-id it gets thru the address privilege analysis during

message routing, and it gets the groupid through lookup of getpwuid(uid). That is, if you

have multiple usernames with same uid, there are no guarantees as to which of them is used for

the gid entry.

Subprogram Envonmrm´e:

The mailbox sets the following eight environment variables for the subprograms it runs in the

pipes:

HOME

The home directory path is taken from abovementioned getpwuid() lookup.

USER

Likewise the textual username.

SENDER

is the incoming �MAIL FROM:<..>� address without brackets. For an incoming error

message, value �<>� is used.

ORCPT

when present, is the XTEXT encoded ORCPT value received at the message injection into

this system. See RFC 1891 for details.

ENVID

when present, is the XTEXT encoded ENVID value received at the message injection into

this system. See RFC 1891 for details.

ZCONFIG

is the location of the ZMailer ZENV �le.

208

Chapter 23. Transport Agents References

MAILBIN

is the value from ZENV.

MAILSHARE

is the value from ZENV.

23.2. hold

- All options

- Internal Logic

- Tuning issues

- Logging ? (or move that to ADM?)

hold - zmailer deferred processing transport agent

Description:

hold is a ZMailer transport agent which is usually only run by the scheduler(8) program to test

conditions for reprocessing of previously deferred message addresses.

The hold program must be run with the same current directory as the scheduler, namely:

$POSTOFFICE/transport/.

The program will interpret the host part of an address destined for its channel as a condition that

must be met before the original address (in the user part) can be reprocessed by the router. The

condition speci�cation contains a general condition class name followed by colon followed by a

parameter string. The currently supported condition classes are:

ns

succeeds when the nameserver lookup indicated by the parameter does not produce a

temporary nameserver error. The parameter is a domain name followed by a slash followed

by a standard Internet nameserver Resource Record type name.

timeout

succeeds when the time given by the parameter (in normal seconds-since-epoch format)

has passed.

io

succeeds 10% of the time, to allow retry of temporary I/O failures.

script

runs the named shell script with the optional given argument. The parameter is a simple

name, the shell script name within the $MAILBIN/bin/ directory, optionally followed by a

slash followed by an argument to be passed to the shell script.

For example:

NS:nic.ddn.mil/cname

209

Chapter 23. Transport Agents References

TIMEOUT:649901432

IO:error

SCRIPT:homedir/joe

The condition class name is case-insensitive but is capitalised by convention. The parameter

strings are case-preserved for condition class-speci�c interpretation. Whitespace is not

permitted.

The envelope of the resubmitted message is created from the sender and (no longer deferred)

recipient addresses, and a �via suspension� header.

Description:

{\bf Usage} \begin{verbatim} hold [-c channel] [-V] \end{verbatim}

Description:

{\bf Parameters} {\tt -c channel} speci�es which channel name should be keyed on. The default

is hold. {\tt -V} prints a version message and exits.

Interface:

As all transport agents, the program reads relative path-names of message control �les from

standard input (terminated with two linefeeds), and produces diagnostic output on the standard

output. Normal diagnostic output is of the form:

id/offset/status message

where id is the inode number of the message �le, offset is a byte offset within its control �le

where the address being reported on is kept, status is one of ok, error, or deferred, and the

message is descriptive text associated with the report. The text is terminated by a linefeed. Any

other format (as might be produced by subprocesses) is passed to standard output for logging in

the scheduler log.

The exit status is a code from <sysexits.h>;.

23.3. smtp

- All options

- Internal Logic at conversions

- SMTP vs. LMTP

- Tuning issues

- Logging ? (or move that to ADM?)

smtp - zmailer SMTP client transport agent

smtp is a ZMailer transport agent which is usually only run by the scheduler(8) to transfer messages

to a remote Internet host using the SMTP protocol. The smtp program must be run with the same

current directory as the scheduler, namely $POSTOFFICE/transport/.

The program scans the message control �les named on STDIN for addresses destined for its channel

and the host given on the command line. If any are found, all matching addresses and messages are

transferred in a single SMTP conversation. The destination host might in fact be served by any

available mail exchanger for that host.

210

Chapter 23. Transport Agents References

Usage:

smtp [-78deEHrPsVxW] [-c channel] [-h heloname] [-l logfile]

[-p remote-port] [-T timeout] [-F forcedest] [-L localidentity] host

Parameters:

-7

forces SMTP channel to be 7-bit, and thus forcing all 8-bit texts to be MIME-QP-encoded

for the transport.

-8

forces SMTP channel to be 8-bit-clean, and as such, to decode the message while

transporting it (is it is MIME QP encoded).

-c channel

speci�es which channel name should be keyed on. The default is smtp.

-d

turns on debugging output.

-e

asks that for every destination address speci�cation with a matching channel name, an MX

lookup is done on the hostname to see whether the currently connected host can provide

service for that destination. The default is to just do a textual name comparison with the

destination hostname as given on the command line.

-e

use the �EHLO�-greeting only if the remote server initial banner reports �ESMTP� on it.

-h host

speci�es the hostname for the SMTP HELO greeting. The default is the hostname of the

local system, as returned by gethostname(2) or uname(2).

-F forcedest

overrides delivery destination by forcing all email to be sent to given forcedest

IP-number/hostname.

-H

Disable the per default active forced 8-bit headers conversion into MIME-2-format.

-L localident

speci�es (for multi-homed machines) that they should use speci�ed identity when

connecting to the destination. Think of server with multiple IP numbers due to virtual

hosting, for example. At such systems there may be situation when virtual identity needs

to be used for reaching the destination system.

211

Chapter 23. Transport Agents References

-l logfile

speci�es a log �le where the complete SMTP command transaction will be copied. Each

line in the log will be pre�xed with the process id of the transport agent process, so the

same log �le can be used by all SMTP clients.

-r

asks to set up SMTP connections using a source TCP port number under 1024. This is in

the range of port numbers only available to a privileged process on some UNIX systems,

which has led to some misguided attempts at mail security based on this mechanism.

-s

asks to report the progress of the SMTP conversation and data transfer on the command

line in a way that will be visible to ps(1).

-x

turns off MX lookups on delivery connections. This may be used ignore public MX

knowledge and do exactly what the router says in cases where delivering to an explicit IP

address is inappropriate.

-P

disable SMTP-PIPELINING usage (ESMTP keyword: PIPELINING)

-T timeout

speci�es the timeout, in seconds, when waiting for a response to an SMTP command. The

timeout applies to all SMTP command-response exchanges except for the

acknowledgement after terminating the DATA portion of a message transaction (after

sending the �.� CRLF sequence). The default timeout is 10 minutes, the minimum

acceptable value is 5 seconds. The timeout on the DATA acknowledgement is large, at

least 10 minutes.

-V

prints a version message and exits.

-W

turns on the DNS WKS checking, and if the remote system does not have SMTP in its

WKS-bits, email delivery to such address is aborted with an error message.

Interface:

As all transport agents, the program reads relative path names of message control �les from

standard input (terminated with two linefeeds), and produces diagnostic output on the standard

output. Normal diagnostic output is of the form:

id/offset<TAB>notify-data<TAB>status message

where id is the inode number of the message �le, offset is a byte offset within its control �le

where the address being reported on is kept, status is one of ok, error, or deferred, and the

message is descriptive text associated with the report. The text is terminated by a linefeed. Any

other format (as might be produced by subprocesses) is passed to standard output for logging in

the scheduler log.

The exit status is a code from <sysexits.h>.

212

Chapter 23. Transport Agents References

Extended SMTP:

When a user sends out 8-bit mail with the proper headers, this module can send it out to

conforming servers either in 8-bit transparent manner, or down-converting

�Content-Transfer-Encoding: 8BIT� to �Content-Transfer-Encoding: 7BIT� or to

�Content-Transfer-Encoding: QUOTED-PRINTABLE� depending on what is the mail contents.

This works only with �Content-Type: TEXT/PLAIN� thus no fancy

MULTIPART/ALTERNATE et.al. schemes.. When �Content-Transfer-Encoding:�-header is not

present in the headers, and recipient has not declared 8-bit SMTP capability, mail contents are

treated with old 7-bit stripping method.

23.4. sm - zmailer Sendmail compatible transport agent

- ALL options, comparison against sendmail M-flags

- Internal Logic (incl. conversions)

- Tuning issues

- Logging ? (or move that to ADM?)

sm is a ZMailer transport agent which is usually only run by the scheduler(8), to deliver messages

by invoking a program with facilities and in a way compatible with a sendmail MTA. The sm

program must be run with the same current directory as the scheduler, namely

$POSTOFFICE/transport/.

The program scans the message control �les named on STDIN for addresses destined for the channel

and/or the host given on the command line. If any are found, all matching addresses and messages

are processed according to the speci�cations for the mailer in the con�guration �le.

The exit status of a mailer should be one of the standard values speci�ed in <sysexits.h>. Of

these, EX_OK indicates successful delivery, and EX_DATAERR, EX_NOUSER, EX_NOHOST,

EX_UNAVAILABLE, and EX_NOPERM indicate permanent failure. All other exit codes will be treated

as a temporary failure and the delivery will be retried.

Usage:

sm [-8] [-H] [-Q] [-V] [-f configfile] -c channel -h host mailer

Parameters:

-8

tells that the output is 8-bit clean, and for any MIME message with

QUOTED-PRINTABLE encoding the coding can be decoded.

-Q

tells that the transport channel will likely treat poorly control characters like TAB, and

possibly SPACE too.. This encodes them all by using QUOTED-PRINTABLE encoding.

213

Chapter 23. Transport Agents References

-f configfile

speci�es the name of a con�guration �le containing speci�cations of the various known

sendmail compatible mailer programs: how to invoke them and how to process messages

for them. The default is $MAILSHARE/sm.cf.

-c channel

speci�es which channel name should be keyed on. There is no default. If this option is not

speci�ed, the -h option must be.

-h host

speci�es which host name should be keyed on. There is no default. If this option is not

speci�ed, the -c option must be.

-h host

prints a version message and exits.

23.4.1. con�guration of sm

sm is a ZMailer's sendmail(8) compatible transport agent to deliver messages by invoking a

program with facilities and in a way compatible with a sendmail(8) MTA.

The program scans the message control �les named on stdin for addresses destined for the channel

and/or the host given on the command line. If any are found, all matching addresses and messages

are processed according to the speci�cations for the mailer in the con�guration �le.

The exit status of a mailer should be one of the standard values speci�ed in #include

<sysexits.h>. Of these, EX_OK indicates successful deliver, and EX_DATAERR,

EX_NOUSER, EX_NOHOST, EX_UNAVAILABLE, and EX_NOPERM indicate permanent

failure. All other exit codes will be treated as a temporary failure and the delivery will be retried.

Usage:

sm [-8] [-H] [-Q] [-V] [-f configfile] -c channel -h host mailer

Con�guration:

The con�guration �le $MAILSHARE/sm.conf associates the mailer keyword from the command line

with a speci�cation of a delivery program. This is very similar to the way the de�nition of a �mailer�

in sendmail(8). It requires �ags, a program name, and a command line speci�cation. These are in

fact the �elds of the entries of the con�guration �le. Lines starting with whitespace or a �#� are

ignored, and all others are assumed to follow format shown in �gure Figure 23-1.

Figure 23-1. Sample sm.conf �le

#

M F = P = A =

the following entries are in active use at this site:

uucp U /usr/bin/uux uux - -r -a$g -gC $h!rmail ($u)

usenet m ${MAILBIN}/ta/usenet usenet $u

#

bitbucket - @MAILBIN@/ta/bitbucket bitbucket

#

214

Chapter 23. Transport Agents References

#

bitnet stuff F=hu not set?

#

bsmtp3 snmSX /usr/local/funetnje/bmail bmail -b $h $g $u

bsmtp3rfc snmSX /usr/local/funetnje/bmail bmail -b $h $g $u

bsmtp3nd snmSX /usr/local/funetnje/bmail bmail -nd $h $g $u

bsmtp3ndrfc snmSX /usr/local/funetnje/bmail bmail -nd $h $g $u

defrt1 snS /usr/local/funetnje/bmail bmail $g $u

bitnet2 snS /usr/local/funetnje/bmail bmail $g $u

#

the following entries are included to illustrate other possibilities

#

#local mS /usr/lib/mail/localm localm -r $g $u

cyrus Pn /usr/cyrus/bin/deliver deliver -e -m $h -- $u

CYRUS example from: Tom Samplonius <tom@sdf.com>

procm sSPfn @PROCMAIL@ procmail -a $h -d $u

Procmail example from: Ken Pizzini <ken@spry.com>

#

#prog - /bin/sh sh -c $u

#tty rs /usr/local/to to $u

#ean mn /local/lib/ean/mailer mailer -d $u

#test n /local/lib/mail/bin/test test $u

#

The mailer �eld extends from the beginning of the line to the �rst whitespace. It is used simply as a

key index to the con�guration �le contents. One or more whitespace is used as the �eld separator for

all the �elds.

The �ags �eld contains a concatenation of one-letter �ags. If no �ags are desired, a �-� character

should be used to indicate presence of the �eld. All normal sendmail (of 5.x era..) �ags are

recognized, but the ones that do not make sense in the context of ZMailer will produce an error (or

some are ignored). The �ags that change the behaviour of sm are:

b

will activate BSMTP-type wrapping with a �hidden-dot� algorithm; e.g. quite ordinary SMTP

stream, but in �batch mode�.

B

The �rst �B� turns on similar BSMTP wrapping as �b�, but adds SIZE and, if the sm is started

with option �-8�, also 8BITMIME options. The second �B� adds there also DSN (Delivery

Status Noti�cation) parameters.

E

will prepend �>� to any message body line starting with �From �. (Read: �From-space�)

f

adds �-f sender� arguments to the delivery program.

n

will not prepend a �From �-line (normal mailbox separator line) to the message.

r

adds �-r sender� arguments to the delivery program.

215

Chapter 23. Transport Agents References

S

will run the delivery program with the same real and effective uid as the sm process. If this �ag

is not set, the delivery program will be run with the real uid of the sm process. This may be

useful if sm is setuid.

m

informs sm that each instance of the delivery program can deliver to many destinations. This

affects $u expansion in the argument list, see below.

P

prepends a �Return-Path:� header to the message.

U

will prepend a �From �-line, with a �remote from myuucpname� at the end, to the message.

This is what is expected by remote rmail(1) programs for incoming UUCP mail.

R

use CRLF sequence as end-of-line sequence. Without it, will use LF-only end-of-line sequence.

X

does SMTP-like �hidden-dot� algorithm of doubling all dots that are at the start of the line.

7

will strip (set to 0) the 8th bit of every character in the message.

The path �eld speci�es the location of the delivery program. Relative pathnames are allowed and are

relative to the $MAILBIN/ directory.

The arguments �eld extends to the end of the line. It contains whitespace separated argv parameters

which may contain one of the following sequences:

$g

which is replaced by the sender address.

$h

which is replaced by the destination host.

$u

which is replaced by the recipient address. If the �m� mailer �ag is set and there are several

recipients for this message, the argument containing the �$u� will be replicated as necessary for

each recipient.

23.5. expirer

- All options

216

Chapter 23. Transport Agents References

- Internal Logic

- Tuning issues

- Logging ? (or move that to ADM?)

FIXME! FIMXE! write me.. (about the tool to kill out messages from the queue)

23.6. libta - Transport Agent Support Library

This is the library that all transport agents use, and several of its functions are intended to aid

message processing.

23.6.1. Function groupings

Transport agent support library function groups are:

� Message �le manipulation routines.

� Diagnostics routines.

23.6.2. Function listings

Text to be inserted here.

23.6.3. Function usage examples

Text to be inserted here.

23.7. Security Issues

Text to be inserted here.

217

Chapter 23. Transport Agents References

218

Chapter 24. ZMailer Utilities Reference

There is considerable collection of various utilities in the ZMailer sources. Not all of them even

become installed into your system in all situations.

24.1. zmailer command script

The zmailer command script is a wrapper for driving various sub-utilities, and in some cases,

honouring �ags like �freeze-state�, which administrator may set to keep system down over reboots

while some maintenance acitivity is under way.

Plain �zmailer� command is synonymous to �zmailer start�.

24.1.1. zmailer bootclean

This removes all internal process reference PID �les from $POSTOFFICE/ directory.

Highly recommended for your system startup scripts before starting servers

24.1.2. zmailer start

Without further parameters this starts the entire ZMailer system by starting subservers: smtpserver,

router, and scheduler.

Giving parameter (one or more of subsystem names above) (re)starts just that (or those)

subsystem(s).

If the system is in �frozen� state, start fails. See �zmailer freeze� below.

24.1.3. zmailer stop, zmailer kill

Without further parameters, this terminates the main daemons of the ZMailer (smtpserver, router,

and scheduler) by sending SIGTERM to them.

Giving parameter (one or more of subsystem names above) stops just that (or those) subsystem(s).

24.1.4. zmailer nuke

Without further parameters, this kills the main daemons of the ZMailer. (smtpserver, router, and

scheduler) by sending SIGKILL to them.

Giving parameter (one or more of subsystem names above) stops just that (or those) subsystem(s).

24.1.5. zmailer router

Synonym to �zmailer start router�, (re)starts the router process(es).

219

Chapter 24. ZMailer Utilities Reference

24.1.6. zmailer scheduler

Synonym to �zmailer start router�, (re)starts the scheduler process.

24.1.7. zmailer smtp(server)

Synonym to �zmailer start smtpserver�, (re)starts the smtpserver process.

24.1.8. zmailer newdb

A complicated subsystem on its own merits used to re-generate router con�guration data for various

database lookups.

This runs utility called �newdbprocessor� with its only argument of

�$MAILVAR/db/dbases.conf�.

24.1.9. zmailer newal(iases)

Re-generates �aliases� database, wrapper of �newaliases�, and superceded by �zmailer newdb�.

24.1.10. zmailer newf(qdnaliases)

Re-generates �fqdnaliases� database, wrapper of �newfqdnaliases�, and superceded by zmailer

newdb.

24.1.11. zmailer new-route(s)

Compiles �routes� database, and superceded by zmailer newdb.

24.1.12. zmailer new-local(names)

Compiles �localnames� database, and superceded by zmailer newdb.

24.1.13. zmailer logsync

A special command sending signals to subsystems needing them for reopening their possibly

long-living log�le opens.

To be used after other methods have rotated the log�les to new names, but before anything further is

done to them.

These days only the scheduler needs it, and if you have a choice, use this only after the �scheduler�

log�le is rotated.

220

Chapter 24. ZMailer Utilities Reference

24.1.14. zmailer logrotate

Runs ZMailer sub-utility �rotate-logs.sh�.

24.1.15. zmailer resubmit

Moves �les from $POSTOFFICE/deferred/ to main router input directory

($POSTOFFICE/router/.)

24.1.16. zmailer cleanup

Run this from your root crontab!

This cleans from $POSTOFFICE/public/ �les that are older than 2 days (48 hours), and from

$POSTOFFICE/postman/ �les with names starting with a digit and aged over 7 days.

24.1.17. zmailer freeze

This sets a �ag which is honoured by subsystem start functions:

/opt/mail/bin/zmailer freeze

freeze

/opt/mail/bin/zmailer router

router Sorry, ZMailer is frozen, won't start anything until thawed !

* CHECK THAT THE FREEZE CONDITION ISN'T DUE TO E.G. MAINTENANCE *

24.1.18. zmailer thaw, zmailer unfr(eeze)

Thaws the previously frozen ZMailer system so that zmailer start will be able to start subsystems.

24.2. The newdbprocessor script

FIXME! WRITEME! (See Section E.4.1 for the con�guration �le)

- Input file syntax

- Supported database types, and what is done to them

- Additional notes ?

24.3. The newdb script

This is elementary wrapper script building binary databases with makedb utility into a temporary

�le, and replacing the old �les with the new ones in proper order for the router's automatic source

change detecting relation parameter -m to work correctly.

221

Chapter 24. ZMailer Utilities Reference

newdb [-u | -l] [-a] [-s] [-t dbtype] /db/path/basename [input-file-name]

This script uses system ZCONFIG �le to �nd out the desired database type, and derives the actual

database �le names from the variable.

Suf�x selection rules are:

dbm .pag and .dir

ndbm .pag and .dir

gdbm .gdbm

btree .db

bhash .dbh

24.4. The makedb utility

This utility is used by the ZMailer system to compile source �les to various binary databases.

The way the ZMailer uses DBM entries is by using C-strings with their terminating NUL included at

keys, and at data.. Thus the length is strlen(string)+1, not strlen(string) !

WARNING: Policy data parsing does use unchecked buffers!

\begin{verbatim}

Usage: makedb [-apsvluA] dbtype database.name [infilename|-]

\end{verbatim}

-a: aliasinput

-p: policyinput

-A: append-mode

-l: pre-lowercasify the key

-u: pre-uppercasify the key

-s: be silent

-v: be verbose

Dbtypes are: {\tt ndbm gdbm btree bhash}

If no {\tt infilename} is defined, {\tt database.name} is assumed.

\begin{description}

\item[{\tt NDBM}] \mbox{}

appends {\tt .pag}, and {\tt .dir}

into the actual db file names.

\item[{\tt GDBM}] \mbox{}

{\bf does not} append {\tt .gdbm}

into the actual db file name.

\item[{\tt BTREE}] \mbox{}

{\bf does not} append {\tt .db}

into the actual db file name.

222

Chapter 24. ZMailer Utilities Reference

\item[{\tt BHASH}] \mbox{}

appends {\tt .pag}, and {\tt .dir}

into the actual db file names.

\end{description}

The {\tt -a} option is for parsing input that comes in

{\tt aliases} format: {\tt key: data,in,single,long,line}

24.5. The dblook utility

The way the ZMailer uses DBM entries is by using strings with

their terminating {\tt NULL} as keys, and as data.. Thus the

length is {\tt strlen(string)+1}, not {\tt strlen(string)} !

\begin{verbatim}

Usage: dblook [-dump] dbtype database.name [key]

\end{verbatim}

Dbtypes are: {\tt ndbm gdbm btree bhash}

\begin{description}

\item[{\tt NDBM}] \mbox{}

appends {\tt .pag}, and {\tt .dir}

into the actual db file names.

\item[{\tt GDBM}] \mbox{}

{\bf does not} append {\tt .gdbm}

into the actual db file name.

\item[{\tt BTREE}] \mbox{}

{\bf does not} append {\tt .db}

into the actual db file name.

\item[{\tt BHASH}] \mbox{}

appends {\tt .pag}, and {\tt .dir}

into the actual db file names.

\end{description}

%\end{multicols}

% %%

\clearpage

223

Chapter 24. ZMailer Utilities Reference

24.6. The policy-builder.sh script

#! /bin/sh

#

Sample smtp-policy-db builder script.

#

This merges following files from $MAILVAR/db/ directory:

smtp-policy.src

localnames ('= _localnames')

smtp-policy.relay.manual ('= _full_rights')

smtp-policy.relay ('= _full_rights')

smtp-policy.mx.manual ('= _relaytarget')

smtp-policy.mx ('= _relaytarget')

smtp-policy.spam ('= _bulk_mail')

smtp-policy.spam.manual ('= _bulk_mail')

#

These all together are used to produce files: smtp-policy.$DBEXT

The produced database retains the first instance of any given key.

#

#FLAG=

#while getopts n c; do

case $c in

n) FLAG=$c;;

?) exit 2;;

esac

#done

#shift `expr $OPTIND - 1`

ZCONFIG=@ZMAILERCFGFILE@

. $ZCONFIG

DBDIR="$MAILVAR/db/"

USAGE="Usage: $0 [-n] [-d dbdir]"

while ["$1" != ""]; do

case "$1" in

-n)

FLAG=n

;;

-d)

shift

DBDIR=$1

if [! -d $DBDIR]; then

echo $USAGE

exit 1

fi

;;

?)

echo $USAGE

exit 0

;;

*)

echo $USAGE

exit 2

;;

esac

224

Chapter 24. ZMailer Utilities Reference

shift

done

umask 022

cd $DBDIR

if [! -f smtp-policy.src] ; then

echo "No $DBDIR/smtp-policy.src input file"

exit 64 # EX_USAGE

fi

-- Former '-f' flag data (non)retrieval section removed

Fork off a subshell to do it all...

(

The basic boilerplate

cat smtp-policy.src

Localnames

echo "# ----------"

echo "# localnames:"

cat localnames | \

awk '/^#/{next;} NF >= 1 {printf "%s = _localnames\n",$1;}'

smtp-policy.relay

(Lists NETWORKS (NO DOMAINS!) that are allowed to use us as relay)

(well, actually it could also list e.g.: ".our.domain" if it would

be fine to allow relaying from anybody whose IP address reverses to

domain suffix ".our.domain")

if [-f smtp-policy.relay.manual] ; then

echo "# -------------------------"

echo "# smtp-policy.relay.manual:"

cat smtp-policy.relay.manual | \

awk '/^#/{next;}

{printf "%s = _full_rights\n",$0;next;}'

fi

if [-f smtp-policy.relay] ; then

echo "# ------------------"

echo "# smtp-policy.relay:"

cat smtp-policy.relay | \

awk '/^#/{next;}

{printf "%s = _full_rights\n",$0;next;}'

fi

smtp-policy.mx.manual

(Lists domains that are allowed to use us as inbound MX relay for them)

if [-f smtp-policy.mx.manual] ; then

echo "# ----------------------"

echo "# smtp-policy.mx.manual:"

cat smtp-policy.mx.manual | \

awk '/^#/{next;} NF >= 1 {printf "%s = _relaytarget\n",$0;}'

fi

smtp-policy.mx

(Lists domains that are allowed to use us as inbound MX relay for them)

if [-f smtp-policy.mx] ; then

225

Chapter 24. ZMailer Utilities Reference

echo "# ---------------"

echo "# smtp-policy.mx:"

cat smtp-policy.mx | \

awk '/^#/{next;} NF >= 1 {printf "%s = _relaytarget\n",$0;}'

fi

smtp-policy.spam

(Lists users, and domains that are known spam sources)

(We use file from "http://www.webeasy.com:8080/spam/spam_download_table"

which is intended for QMAIL, and thus needs to be edited..)

if [-f smtp-policy.spam -o -f smtp-policy.spam.manual] ; then

echo "# ---------------------------"

echo "# smtp-policy.spam{,.manual}:"

(if [-f smtp-policy.spam] ; then

cat smtp-policy.spam

fi

if [-f smtp-policy.spam.manual] ; then

cat smtp-policy.spam.manual

fi) | tr "[A-Z]" "[a-z]" | sed 's/^@//g' | sort | uniq | \

awk '/^\[/{ # an address block to reject

printf "%s rejectnet +\n",$0;

next;

}

NF > 0 { # All other cases are usernames with their domains

printf "%s = _bulk_mail\n",$0;

}'

fi

--------- end of subshell

) > smtp-policy.dat

umask 022 # Make sure the resulting db file(s) are readable by all

Build the actual binary policy database (-p), and if the input

has same key repeating, append latter data instances to the first

one (-A):

$MAILBIN/makedb -A -p $DBTYPE smtp-policy-new smtp-policy.dat || exit $?

case $DBTYPE in

dbm)

mv smtp-policy-new.dir smtp-policy.dir

mv smtp-policy-new.pag smtp-policy.pag

;;

ndbm)

mv smtp-policy-new.dir smtp-policy.dir

mv smtp-policy-new.pag smtp-policy.pag

;;

gdbm)

mv smtp-policy-new.gdbm smtp-policy.gdbm

;;

btree)

mv smtp-policy-new.db smtp-policy.db

;;

esac

exit 0

226

Chapter 24. ZMailer Utilities Reference

24.7. autoanswer

The autoanswer program is intended to be placed into system global aliases database as following

entry:

autoanswer: "| /path/to/MAILBIN/autoanswer"

It yields a reply message for all, except the error messages, nor to those with

X-autoanswer-loop: header in them.

The reply sends back the original incoming message headers in the message body along with some

commentary texts.

The program is, in reality, a perl script which can easily be tuned to local needs.

#!@PERL@

##

#

Autoanswer.pl 1.0 for ZMailer 2.99.48+

(C) 1997 Telecom Finland

Valtteri Karu <valtteri.karu@tele.fi>

#

This program sends autoreply and the original headers to the originator

of the message. Version 2.99.48+ of the Zmailer is required for detecting

possible false addresses.

#

USAGE:

#

Create an alias for the address want to use:

autoreply: "|/path/to/autoanswer.pl"

#

##

$nosend = 0;

$double = 0;

$address = $ENV{'SENDER'};

if(! -r "$ENV{'ZCONFIG'}") {

LOG("zmailer.conf missing");

exit 2;

}

open(ZMAILER,"< $ENV{'ZCONFIG'}");

while(<ZMAILER>) {

chomp;

split(/=/);

$ZMAILER{$_[0]}=$_[1];

}

close ZMAILER;

$logfile = $ZMAILER{'LOGDIR'} . "/autoanswer";

while (<STDIN>) {

$text = $_;

227

Chapter 24. ZMailer Utilities Reference

if (($text eq "\n") && ($double == 1)) {

last;

}

if (($text eq "\n") && ($double == 0)) {

$double = 1;

next;

}

if ($text =~ m/^X-autoanswer-loop:/i) {

$nosend = 1;

LOG("Looping message, sender=$address");

}

$double = 0;

push(@header,$text);

}

if (($address eq '<>') || $nosend) {

LOG("SENDER invalid");

exit 1;

}

$outfile = $ZMAILER{'POSTOFFICE'} . "/public/autoanswer.$$";

#$outfile = "/tmp/aa.$$";

$now = time;

$txttime = localtime(time);

open(OUT,">$outfile");

select(OUT);

print "channel error\n";

print "to $address\n";

print "env-end\n";

print "From: Autoreply service <postmaster>\n";

print "To: $address\n";

print "Subject: Autoreply\n";

print "X-autoanswer-loop: Megaloop \n\n";

print " This is autoreply answer message by your request.\n\n";

print " Original message was received at UNIX time $now;\n";

print " which means '$txttime' in cleartext.\n\n";

print " Headers were:\n\n";

print "--\n";

print @header;

print "--\n";

print "\n Have a nice day.\n";

select(STDOUT);

close OUT;

$inode=(stat($outfile))[1];

$newfile=$ZMAILER{'POSTOFFICE'} . "/router/$inode";

rename($outfile, $newfile);

LOG("Sent to $address");

exit 0;

sub LOG {

228

Chapter 24. ZMailer Utilities Reference

open(LOGf, ">>$logfile");

$ttime = localtime(time);

printf (LOGf "$ttime autoanswer: @_\n");

close LOGf;

}

24.8. vacation

vacation automatically replies to incoming mail. The canned reply is contained in the �le

~/.vacation.msg, that you should create in your home directory (or the �le Msgfile speci�ed by

the -m option).

This �le should include a header with at least a �Subject:� line (it should not include a �To:� line �

if you want, you may include �From:� line, especially if you use the -m option), for example.

Usage:

To start vacation, run the command vacation start. It will create a ~/.vacation.msg �le

(if you don't already have one) in your home directory containing the message you want to send

people who send you mail, and a ~/.forward �le in your home directory containing a line of

the form:

"\name", "|/opt/mail/bin/vacation name"

where name is your login name. Make sure these �les and your home directory are readable by

everyone. Also make sure that no one else can write to them, and that no one can write to your

home directory. Like this:

chmod og-w $HOME $HOME/.forward

)

To stop vacation, run the command vacation stop. It will move the ~/.forward �le to

~/.vacforward, and the automatic replies will stop.

vacation 'start'

vacation 'stop'

vacation -I

vacation [-tN] [-mMsgfile] [-d] [user]

Parameters:

-I, -i

initialize the .vacation.pag, and .vacation.dir �les (or whatever the system

supported database is), and start vacation.

If the -I (or -i) �ag is not speci�ed, vacation tries to reply to the sender.

-tN

Change the interval between repeat replies to the same sender. The default is one week. A

trailing s, m, h, d, or w scales N to seconds, minutes, hours, days, or weeks respectively.

229

Chapter 24. ZMailer Utilities Reference

-mMsgFile

speci�es the �le in which the message to be sent is kept. The default is

$HOME/.vacation.msg.

-r

interval de�nes interval in days when not to answer again to the same sender. (Default is 1

day.)

-d

disables the list of senders kept in the .vacation.pag and .vacation.dir �les. (Or

whatever database format is being used.)

Example:

Subject: I am on vacation

I am on vacation until July 22. If you have something urgent, please

contact Joe Jones (joe@blah.utoronto.ca). --john

No message is sent if the �user� speci�ed in the vacation command (if nothing is speci�ed, it

uses your username) does not appear explicitly in the �To:� or �Cc:� lines of the message,

which prevents messages from being sent back to mailing lists and causing loops.

A list of senders is kept in the �les ~/.vacation.pag and ~/.vacation.dir in your home

directory. These are dbm database �les. (Note: not all database systems have two �les, either

may be missing.) The vacation message is in ~/.vacation.msg and the automatic reply is

activated by the ~/.forward (and saved in ~/.vacforward) The default vacation message is

stored in $MAILSHARE/vacation.msg

On machines running ZMailer, the �name� argument to vacation is optional, and the $USER

environment variable is used to determine where to look for the message and the list of previous

recipients.

The $SENDER variable is checked �rst to determine the reply destination. It is normally set to

the SMTP �MAIL FROM:� address or equivalent. This is an additional safeguard against

sending replies to mailing lists, the PostMaster or the mailer daemon, since standards and

common sense dictate that it never points back to an address that could cause a loop. The �From

� line is used only as a last resort.

230

V. Appendices

Appendix A. Sample Router Con�guration

Scripts

Text to be inserted here.

The following are examples of the router con�guration scripts SMTP+UUCP.cf, crossbar.cf,

process.cf, and rrouter.cf.

A.1. SMTP+UUCP.cf

ZMailer 2 con�guration �le for a generic SMTP host (with UUCP links)

ZCONFIG=@ZMAILERCFGFILE@

. $ZCONFIG

PATH=.:$MAILSHARE/cf:$MAILBIN/bin ; export PATH

PS1=z$PS1

Con�gure error logging (squirrel)

squirrel -breakin

squirrel badheader

Domains with these toplevels will not be canonicalized via DNS lookup. This list is from ISOC table

of 16-April-95.

The quoted string {\tt "ad...zw"} should be on one line in the actual SMTP+UUCP.cf �le.

toplevels="ad ae af ag ai al am an ao aq ar as at au aw az ba bb bd

be bf bg bh bi bj bm bn bo br bs bt bv bw by bz ca cc cf

cg ch ci ck cl cm cn co com cr cu cv cx cy cz de dj dk dm

do dz ec edu ee eg eh es et fi fj fk fm fo fr ga gb gd ge

gf gh gi gl gm gn gov gp gq gr gt gu gw gy hk hm hn hr ht

hu id ie il in int io iq ir is it jm jo jp ke kg kh ki km

kn kp kr kw ky kz la lb lc li lk lr ls lt lu lv ly ma mc

md mg mh mil ml mm mn mo mp mq mr ms mt mu mv mw mx my mz

na nc ne net nf ng ni nl no np nr nt nu nz om org pa pe pf

pg ph pk pl pm pn pr pt pw py qa re ro ru rw sa sb sc sd se

sg sh si sj sk sl sm sn so sr st sv sy sz tc td tf tg th tj

tk tm tn to tp tr tt tv tw tz ua ug uk um us uy uz va vc ve

vg vi vn vu wf ws ye yu za zm zr zw"

The transport preference order

protocols='routes smtp uucp'

Will the MAILVAR/lists/listname show out sender identity as either: owner-listname, or:

listname-owner?

if true ; then # Change to "false" to get "pre-owner" mode

preowner=""

postowner="-owner"

else

preowner="owner-"

233

Appendix A. Sample Router Con�guration Scripts

postowner=""

fi

Does our �local� channel accept domain (@) at the user part? ZMailer's mailbox does accept. If you

use something else, and it doesn't accept, comment this away.

localdoesdomain=1

We may want .forward and mailing list �les to be private, i.e., we ignore the current privileges when

checking the privileges of such �les. Don't add `include' to this list, since anyone can :include: any

�le.

private='.forward maillist'

Set up dependency checking.

. consist.cf

require siteinfo router crossbar process server

The following are standard setup �les and must be loaded in this order

. standard.cf

. trusted.cf

Load the databases so they and the variables de�ned (e.g. network-speci�c node names for this host)

can be used in the site speci�c con�guration.

for method in $protocols

do

test -f $MAILSHARE/cf/i-${method}.cf && . i-${method}.cf

done

mailconf () {

local hname

My official hostname

if [-f /bin/hostname]; then

rawhostname=$(/bin/hostname)

elif [-f /etc/sys_id]; then

read rawhostname < /etc/sys_id

else

rawhostname=$(/bin/uname -n)

fi

hname=$(canon $rawhostname)

Try to discover the organizational domain name.

orgdomain=$hname

sift $hname in

$rawhostname\.(.+)

orgdomain=\1

;;

tfis

hostname=$hname

This is what it will say on out mail

mydomain=$hostname

234

Appendix A. Sample Router Con�guration Scripts

}

orgdomains=x

: ${MAILCONF:=/etc/mail.conf}

if [! -r $MAILCONF]; then

echo "$0: missing $MAILCONF: using the following values:"

mailconf

echo orgdomain=$orgdomain

echo hostname=$hostname

echo mydomain=$mydomain

provide siteinfo

else

. $MAILCONF && provide siteinfo

fi

["$orgdomains" = x] && orgdomains=$orgdomain

Set hostname to enable message-id generation and checking.

hostname $hostname

. aliases.cf

. canon.cf

. rrouter.cf

. crossbar.cf

for method in $protocols

do

. p-${method}.cf

done

. process.cf

. server.cf

consist || exit 1

A.2. Crossbar.cf

provide crossbar

The crossbar function makes the policy decisions of how the instance of a message between a

particular sender and recipient should be treated. The 'from' and 'to' parameters are quads, i.e., in

the form

(channel host user attributes)

The function may modify any of these elements of both the from and to addresses, and must select a

message header address rewriting function to be applied to this message instance. If the return value

is nil or empty, the instance is completely ignored, to the point that if there are no other recipients

speci�ed a complaint will be generated saying there are {\bf no} recipients speci�ed.

crossbar (from, to) {

local rewrite destination tmp

Count them... (in {\tt process.cf}) (we could use this as an ultimate duplicate remover too...)

db add recipients "$(user $to)" "$(user $from)"

235

Appendix A. Sample Router Con�guration Scripts

Intercept (drop, redirect, bounce, save) the message

tmp=$(intercept "$(user $from)") &&

case "$(car $tmp)" in

Dropping error types for from addresses is necessary to avoid mail loops.

drop|error)

return ;;

file) LOGMSG="$LOGMSG $(car $(cdr $tmp))" ;;

esac

Only intercept mail that is not from the local postmaster, so that error messages can �nd their way

back.

["$(channel $from)" = local -a "$(user $from)" = postmaster] ||

tmp=$(intercept "$(user $to)") &&

case "$(car $tmp)" in

drop) return ;;

error) setf $(channel $to) error

setf $(host $to) $(car $(cdr $tmp))

;;

file) LOGMSG="$LOGMSG $(car $(cdr $tmp))" ;;

esac

If we do any alias expansion from the crossbar, we should do this:

db flush expansions

Determine which rewrite function (for message header addresses) to use.

case $(channel $to) in

smtp|smtpx)

#case "$(channel $from)" in

#smtp|smtpx) # Address should be forwarded the way the arrive

rewrite=null ;;

#*) rewrite=internet ;;

#esac

rewrite=internet

;;

error) rewrite=null ;;

local) case "$(channel $from)" in

local) #rewrite=intramachine

rewrite=internet ;;

*) # addresses should be saved the way they arrive

rewrite=null ;;

esac

;;

usenet) rewrite=internet ;;

ean) rewrite=ean_useratdomain ;;

*) # This is usually UUCP or BITNET

We want to determine the final destination host/domain

destination="$(uucproute "$(user $to)")"

if ["$(host $to)"]; then

destination="$(host $to)"!"$destination"

fi

sift "$destination" in

.*!([^!]+)![^!]+

236

Appendix A. Sample Router Con�guration Scripts

destination="\1" ;; # destination domain

.*\.(bitnet|netnorth|earn|cdn)

rewrite=smtp_useratdomain

break ;; # reply to user@domain

.* rewrite=internet ; break ;; # default sensible thing

tfis

;;

esac

The alias expansion might want to modify the envelope sender of the message instance. Here we

cooperate in the scheme which is to set the 'sender' attribute of the destination address.

tmp="$(get $(attributes $to) sender)" && [x"$tmp" != x] &&

from=(local "$tmp" "$tmp" $(attributes $from))

case "$(channel $from)" in

defrt1*)

setf "$(user $from)" "$(bitnetroute "$(user $from)")"

if [$rewrite = internet]; then

rewrite=bitnet2internet

fi

;;

esac

Rewrite the envelope addresses appropriately.

case "$(channel $to)" in

uucp|local)

uucp)

Local destination on a system that delivers in UCB Mail compatible mail spool �les means that the

From_ line must be in all-! form, which is the same as the UUCP transport requirement.

setf "$(user $from)" "$(uucproute "$(user $from)")"

setf "$(user $to)" "$(uucproute "$(user $to)")"

sift "$(user $to)" in

(.)!(.*) if [\1 = $(host $to)]; then

setf "$(user $to)" \2

fi

;;

tfis

sift "$(user $to)" in

(.)\.uucp!(.*) setf "$(user $to)" \1!\2 ;;

tfis

;;

smtp)

smtp|smtpx|local|bsmtp3*)

tmp="$(smtproute "$(user $from)")"

sift "$tmp" in

(@$hostname[:,].*)|([^@:,]+@$hostname)

break ;;

.*

tmp="@$hostname:$tmp" # <-- that creates RFC-822

source-routing, AVOID!

tmp="$tmp"

;;

@(.+):(.+:.+)

237

Appendix A. Sample Router Con�guration Scripts

tmp="@\1,\2" ; continue ;;

tfis

setf "$(user $from)" "$tmp"

sift "$(user $to)" in

(^/).* setf "$(user $to)" "$(smtproute "$(user $to)")" ;;

tfis

;;

ean)

setf $(user $from) "$(ean_useratdomain "$(user $from)")"

setf "$(user $to)" "$(ean_useratdomain "$(user $to)")"

;;

usenet)

setf $(user $from) "$(uucproute "$(user $from)")"

sift $(user $from) in

$hostname!.* ;;

.* setf $(user $from) $hostname!$(user $from) ;;

tfis

newsgroup name only

setf "$(user $to)" $(localpart "$(user $to)")

;;

bsmtp3|bsmtp3nd)

setf $(user $from) "$(bitnetroute "$(user $from)")"

tmp="$(bitnetroute "$(user $to)")"

sift "$tmp" in

.*@([^.]).uucp

tmp="$(bitnetShortroute "$(user $to)")" ;;

tfis

setf "$(user $to)" "$tmp"

rewrite=bitnetShortroute

;;

defrt1)

setf $(user $from) "$(bitnetroute "$(user $from)")"

setf $(user $to) "$(bitnetroute "$(user $to)")"

rewrite=bitnetroute

sift "$(user $to)" in

(.*)[!%](.+)@(.*)

to=(error bitnetgw "\3" $(attributes $to))

rewrite=null

;;

tfis

;;

esac

#log recipient: "$(channel $to)" "$(host $to)" "$(user $to)"

return ($rewrite $from $to)

} # end of crossbar

If you want to intercept speci�c mail messages, this function and the associated code in the crossbar

and process functions will let you do it. There are three possible actions:

drop - completely ignore this address

error - return the specified error message

file - append the message file to the specified file

238

Appendix A. Sample Router Con�guration Scripts

Both the �le and error actions require an argument, which necessitates the use of multiple-value

return (i.e., return a list) in all cases.

If you don't want to intercept anything, this function should return failure. The stub de�ned here is

the usual case, you can override it in the host- speci�c cf �le.

intercept (address) {

case "$(smtp_useratdomain "$address")" in

@pdq) return (file /var/scr/pdq) ;;

rayan@csri.*) return (drop) ;;

bitftp*@*) return (error bounce) ;;

esac

return 1

}

On mail from one local user to another, we don't want to see all the long domain name extensions.

This can cause problems with silly UAs, if it does you can just rede�ne {\tt intramachine} to call {\tt

null} in your site or host-speci�c con�guration �les.

intramachine (address) { # strip hostname if it came from here

sift "$address" in

(.*)@($hostname|$mydomain)

address="$(condquote "\1")" ;;

tfis

return "$address"

} # end of intramachine

null (address) {

return "$address" # surprise!

}

This is usually the default message-header address rewriting function. It is responsible for hostname

hiding and quali�cation.

internet (address) {

address="$(canonicalize "$address")" # Canonicalize does local

hostname hiding...

sift "$address" in

(.*)<@(.+)>(.*)

#if [$(deliver \2)]; then # hostname hiding

address="\1@${mydomain}\3"

break

#fi

address="\1@\2\3" # No hostname hiding...

;;

(.*)<(.+)>(.*) address="\1\2\3" ;; # defocus

[^@]+

This is a local part address w/o any domains!

address="$(condquote "$address")"

address="$address@$mydomain" # add our hostname

;;

tfis

return "$address"

} # end of internet

239

Appendix A. Sample Router Con�guration Scripts

A.3. Process.cf

This is the protocol switch function. It keys off the form of the �lename to determine how to process

a particular class of messages. It is expected that an internal function will be called to orchestrate the

processing of the message and enforce proper semantics.

The �le argument is the name of a �le in the {\tt \$POSTOFFICE/router} directory.

process (file) {

db flush pwuid

db flush pwnam

db flush fullname

db flush hostexpansions

db flush recipients

Since we cannot detect that the password database has been updated under our feet, we �ush the

cached information every once in a while (in this case, before every message).

LOGMSG=�

The LOGMSG variable is used by the intercept facility (in {\tt crossbar.cf}) to make sure only a

single copy of a message is saved when required. Each sender - recipient address pair can cause an

intercept which can specify a �le to save the message to. This variable is appended to elsewhere, and

processed at the end of this function.

case "$file" in

[0-9]*.x400) x400 "$file" ;;

[0-9]*.uucp) uucpfilter "$file" > /tmp/X.$$

cat /tmp/X.$$ > "$file"

rfc822 "$file" ;;

[0-9]*) rfc822 "$file" ;;

core*) /bin/mv "$file" ../$file.router.$$

return

;;

*) /bin/mv "$file" ../postman/rtr."$file".$$

return

;;

esac

[$?] && return 0 # Leave when they returned failure..

The �le names in the {\tt \$POSTOFFICE/router} directory are determined by the parameter to the

mail_open() C library routine. This case statement knows about the various message �le types

needed on your system, and arranges appropriate processing of each. The internal function {\tt

rfc822} expects a �le name as argument, and determines the semantics of the message and of the

con�guration code. For example, the {\tt router}, {\tt crossbar}, and {\tt header_defer} functions

have semantics only because the {\tt rfc822} function knows about them. There are no other

message formats supported in this distribution.

log info: recipients $(db count recipients) $(elements $(cdr $(cdr $(cdr $(cdr $envelopeinfo))))) '

'

For statistics gathering we print out the envelope information property list in its entirety, except for

the �le name, and the message id, both of which were logged earlier (in C code).

for f in $LOGMSG

240

Appendix A. Sample Router Con�guration Scripts

do

{ echo "==${file}==$(rfc822date)==" ;

/bin/cat ../queue/"$file" } >> $f && log saved "$file" in $f

done

}

This does the saving of intercepted messages into archive �les.

A.4. Rrouter.cf

Most of the address routing processing is done here.

provide rrouter

. fqdnalias.cf # Pick that set of tools into here!

envelopeinfo=(message-id "<$USER.interactive@$hostname>" now 0)

: ${UNRESOLVABLEACTION:='error unresolvable'}

relation -bt selfmatch selfmatch

rrouter (address, origaddr, A, plustail, domain) {

local tmp tee didhostexpand priv nattr a

local seenuucp seenbitnet

seenuucp=false

seenbitnet=false

didhostexpand="";

echo "rrouter: address=$address, origaddr=$origaddr" >> /dev/tty

tmp=$(fqdn_neighbour "$origaddr" "$address" $A) &&

return $tmp

address="$(condquote "$address")"

We have troublesome addresses coming here...

"|pipe-program"

"|quoted string"@domain

"foo > faa"@domain

"fii < fuu"@domain

"foo @ faa"@domain

"|foo @ faa"

and we want to do correct focusing...

ssift "$address" in

Now make canonical

'"'(.*)'"'<(.*)

address="\1\2" # defocus

;;

'"'(.*)'"'>(.*)

address="\1\2" # defocus

break ;;

([\'"'].*[\'"'])<(.*)

address="\1\2" ;; # defocus

241

Appendix A. Sample Router Con�guration Scripts

([\'"'].*[\'"'])>(.*)

address="\1\2" ;; # defocus

See that it does not start with a pipe ...

\|.+ # Looks like a pipe... Don't mutilate it!

break ;;

'"'[|].+ # Quoted pipe?? What the ...??

break ;;

tfiss

address=$(canonicalize "$address")

ssift "$address" in

<in%>(.*)

return (((error vms-in-pros "in%\1" $A))) ;;

(.*)<@(.+)\.uucp>(.*)

seenuucp=true

address="\1$plustail<@\2>\3" ;; # fix host.uucp!route

(.*)<@(.+)\.(bitnet|earn|netnorth)>(.*)

seenbitnet=true # Strip off the (bitnet|netnorth|earn)

address="\1<@\2>\4" ;; # fix host.bitnet!route

handle special cases.....

\\(.) return (((local - "$address" $A))) ;;

@ # handle <> form???

tmp=(local user postmaster $A)

return $(routeuser $tmp "")

;;

The following two are two approaches to the same problem, generally speaking we should use the

SECOND one, but your mileage may vary... (Problems exist when WE are the target..)

(.*)<@\[(.)\]>(.*)

address="\1$plustail<@$(gethostbyaddr \2)>\3"

;;

(.*)<@\[(.)\]>(.*)

numeric internet spec

if [$(selfmatch "\2")]; then

address="\1$plustail<@>\3"

domain="@[\2]"

plustail=""

else

return (((smtp "[\2]" "\1$plustail@$(gethostbyaddr \2)\3" $A)))

fi

;;

This is the end of the $1.2.3.4$ address case...

(.*)<@(.*)\.>(.*)

address="\1$plustail<@\2>\3"

plustail=""

;;

Now massage the local info.

(.*)<@(.*)($orgdomains)>(.*)

address="\1$plustail<@\2$orgdomain>\4"

domain="@\2$orgdomain"

plustail=""

;;

242

Appendix A. Sample Router Con�guration Scripts

<@(.*)>[:,](.+)@(.+)

if [$(deliver "\1")]; then # Source routed to our name?

return $(rrouter "\2$plustail@\3" "$origaddr" $A "" "")

fi

;;

<@($orgdomains)>[:,](.+)@(.+)

return $(rrouter "\2$plustail@\3" "$origaddr" $A "" "")

;; # strip organization

(.+)<@(.+)>(.*)

if [$(deliver "\2")]; then # Do we handle this?

address="\1$plustail<@>\3"

domain="@\2"

plustail=""

elif ["\2" = "$hostname"]; then # Is it at local host?

address="\1$plustail<@>\3" # (this is a backup test)

domain="@\2"

plustail=""

fi ;;

<@>.(.+) # This plustail is propably wrong...

return $(rrouter "\1$plustail" "$origaddr" $A "" "$domain") ;; # try after route strip

(.+)<@>

if [-z "$domain"]; then

domain="$mydomain"

fi

return $(rrouter "\1$plustail" "$origaddr" $A "" "$domain") ;; # strip trash & retry

tfiss

#log "BITNET name=$bitnetname, address=$address"

case $bitnetname in

?*) tsift "$address" in

(.*)<@(.*)\.(bitnet|netnorth|earn)>(.*)

address="\1<@\2>\4" ;;

Strip off the (bitnet|netnorth|earn)

tfist

;;

esac

#log "BITNET name=$bitnetname, address=$address"

Resolve names to routes, get the actual channel name mostly from an external database.

ssift "$address" in

(.*)<@(.+)>(.*)

#log "neighbourg test: domain: \2, addr: $address"

address="\1$plustail@\2\3"

plustail=""

If you want to have the SMARTHOST to pick the routing for all non-local stuff, enable the

following test case..

if ["$SMARTHOST"]; then

return $(rrouter "$SMARTHOST!$(uucproute "$address")$plustail" "$origaddr" $A "" "$domain")

else

return ((($UNRESOLVABLEACTION "$address" $A)))

fi

#if [x$seenbitnet = xtrue]; then

243

Appendix A. Sample Router Con�guration Scripts

address="\1@\2.bitnet"

#fi

didhostexpand=$(hostexpansions "\2")

for method in $protocols

do

tmp=$(${method}_neighbour "\2" "$address" $A) &&

return $tmp

done

#if [x$seenuucp = xtrue]; then

if ["$UUCPACTION" != ""]; then

return ((($UUCPACTION "\1@\2.uucp" $A)))

fi

tmp=$(routes_neighbour "\2.uucp" "$address" $A) &&

return $tmp

#fi

#if [x$seenbitnet = xtrue]; then

if ["$BITNETACTION" != ""]; then

return ((($BITNETACTION "\1@\2.BITNET" $A)))

fi

#fi

if ["$SMARTHOST"]; then

return $(rrouter "$SMARTHOST!$(uucproute "$address")" "$origaddr" $A "" "$domain")

else

return ((($UNRESOLVABLEACTION "$address" $A)))

fi

;;

\\(.+) # A back-quote prefixed userid (most likely)

return $(rrouter "\1" "$origaddr" $A "$plustail" "")

;;

/.+ # file

Well, it could be a slash-notated X.400 address too..

return (((local "file.$origaddr" "$address" $A)))

;;

\|.+ # pipe

return (((local "pipe.$origaddr" "$address" $A)))

;;

:include:.+ # ":include:" -alias

We must test this here, because the �le-path after this pre�x may have a dot.

tmp=(local "$origaddr" "$address" $A)

return $(routeuser $tmp "")

;;

Ok, from now on if we don't have a domain set, we use {\tt \$mydomain}

.* if [-z "$domain"] ; then

domain="@$mydomain"

244

Appendix A. Sample Router Con�guration Scripts

fi

;;

(.+\.[^+]+)(\+.+) # Dotfull name with a plus!

plustail="\2"

address="\1"

Fall forward for the dotfull processing.

;;

.+\..+ # A dotfull name

tmp="$(fullnamemap "$address")" && \

return $(rrouter "$tmp" "$origaddr" $A "$plustail" "$domain")

if [$(newsgroup "$address")]; then

return (((usenet - "$address" $A)))

fi

Okay... Not in our special fullname/newsgroup-�les, lets see if it is in the traditional one?

if [$(aliases "$address")]; then

It can be found from the normal aliases, run the alias processing.

tmp=(local "$origaddr" "$address" $A)

return $(routeuser $tmp "$domain")

fi

return (((error norealname "$address" $A)))

return (((error nonewsgroup "$address" $A)))

;;

.* # Now all the rest of the cases..

tmp=(local "$origaddr" "$address$plustail" $A)

return $(routeuser $tmp "$domain")

;;

tfiss

} # end of rrouter

routes_spec (domain, address, A) {

local tmp channel rscshost

sift "$domain" in

(bsmtp3nd|bsmtp3|bitnet2|bitnet2deliver2)!(.)!(.)

(bsmtp3nd|bsmtp3|bsmtp3nd|bsmtp3rfc|bsmtp3ndrfc)!(.)!(.)

return (((\1 "\2@\3" "$address" $A))) ;;

(defrt1)!(.)

channel=\1

rscshost=\2

tmp="$(uucproute "$address")"

sift "$tmp" in

.+!([^!]+)!([^!]+)

We are trying to gateway through a DEFRT1 domain(!)

#return (((error bitnetgw "$address" $A))) ;;

This will usually work anyway, sigh...

return (((bsmtp3 "mailer@$rscshost" "\2@\1" $A))) ;;

245

Appendix A. Sample Router Con�guration Scripts

([^!]+)!([^!]+)

The destination domain is the next hop, so we're all happy.

return ((($channel "\2@$rscshost" "\2@\1" $A))) ;;

tfis

;;

ignore!.*

break

;;

smtp!

ssift "$address" in

(.*)@(.+)

return (((smtp "\2" "$address" $A)))

;;

tfiss

;;

dns!

ssift "$address" in

(.*)@(.+)

return (((smtp "\2" "$address" $A)))

;;

tfiss

;;

(.?)!

return ((("\1" - "$address" $A)))

;;

delay!(.)

NB! envelope info must also be de�ned in interactive mode.

tmp="$(/bin/expr $(get envelopeinfo now) + "\1")"

return (((hold "$tmp" "$address" $A))) ;;

(.?)!([^!]+)

return ((("\1" "\2" "$address" $A))) ;;

(.?)!(.+)

BEWARE LOOPS

return $(rrouter "\2!$(uucproute "$address")" "$address" $A "" "$domain")

;;

tfis

return 1

}

uucproute (address) {

This function turns any address into a pure-! form. It should not call any other functions, since

random other functions call it. In particular it should not use rfc822route which itself uses uucproute.

sift "$address" in

(.*)<(.*)>(.*) address=\1\2\3 ;; # defocus

(.+!)@(.+) address=\1$(uucproute "@\2") ;;

(.+)([,:]@)(.+) address=\1!\3 ; continue ;;

:include:[^!]+ return $address ;;

@(.+:)([^:]+) address=\1$(uucproute "\2") ;;

(.+):(.+) address=\1!\2 ; continue ;;

246

Appendix A. Sample Router Con�guration Scripts

This won't work properly for e.g. utzoo!bar@gpu.utcs.toronto.edu because gpu.utcs also has an

active uucp connection with utzoo. It will work properly in other cases though, so if we have to

guess...

#([^!])!(.+)@(.+) if [$(ldotsys \1)]; then

address=\1!\3!\2

else

address=\3!\1!\2

fi ;;

(.+)!([^!]+)%([^!%]+)@(.+) # route!a%b@c -> route!c!a@b

address=\1!\4!\2@\3 ; continue ;;

([^@]+)@(.+) address=\2!\1 ;;

@(.+) address=\1 ;;

(.+)!([^!]+)[%@](.+) address=\1!\3!\2 ;;

tfis

return "$address"

} # end of uucproute

247

Appendix A. Sample Router Con�guration Scripts

248

Appendix B. Scheduler's Con�guration File

Samples

Here are sample scheduler con�guration �les pulled straight out of the sources.

B.1. scheduler.conf

#

Scheduler configuration file

#

The scheduler reads this file on startup or when it receives a SIGUSR1 signal

#

Every channel/host combination in recipient addresses will be sifted through

the clauses matched in this file, picking up parameters until a clause that

specifies a command. Everything is free-form with three requirements:

- Clauses (i.e. the channel/host pattern) start at the beginning of a line.

- Clause contents (i.e. the parameters) start after some whitespace

- Clause content keywords are matched case INSENSITIVE

- Components are separated by whitespace.

#

Within command=" ... " strings, following "variables" are known:

$host message's host

$channel message's channel

${LOGDIR} ZENV variable LOGDIR (all ZENV variables supported)

#

NB! For command paths, the $PATH is: $MAILBIN/ta

(Unless an absolute path is given for a command)

for *running* things, the CWD is: $POSTOFFICE/transport/

#

#

Note, there are three kinds of resource-pool limitation parameters

which control when a given channel+host pair (thread) is NOT taken

into processing:

#

MaxTA: (Set in "*/*" clause)

GLOBAL parameter limiting the number of transport-agent processes

that the scheduler can have running at the same time.

#

With this you can limit the number of TA processes running at the

same time lower than maximum allowed by your OS setup.

#

The scheduler detects the max number of FDs allowed for a process,

and analyzing how many FDs each TA interface will need - plus

reserving 10 FDs for the itself, result is �probed maxkids�.

#

MaxChannel: (default: �probed maxkids�)

Selector clause specific value limiting how many transport-agent

processes can be running on which the �channel� part is the same.

You may specify dis-similar values for these as well. For example

you may use value '50' for all your 'smtp' channel entries, except

that you want always to guarantee at least five more for your own

249

Appendix B. Scheduler's Con�guration File Samples

domain deliveries, and thus have:

smtp/*your.domain

maxchannel=55

If the sum of all �maxchannel� values in different channels exceeds

that of �maxta�, then �maxta� value will limit the amount of work

done in extreme load situations.

#

MaxRing: (default: �probed maxkids�)

This limits the number of parallel transport agents within each

selector definition. This defined the size of the POOL of

transport agent processes available for processing the threads

matching the selector clause.

#

MaxTHR: (max processes per thread; default: 1)

This limits the number of parallel transport agents within each

thread; that is, using higher value than default �1� will allow

running more than one TA for the jobs at the thread.

#

Do note that running more than one TA in parallel may also require

lowering OVERFEED value. (E.g. having a queue of 30 messages will

not benefit from more TAs, unless they all get something to process.

Having OVERFEED per default at 150 will essentially feed whole queue

to one TA, others are not getting any.)

#

OverFeed:

This tells how many job specifiers to feed to the TA when

the TA process state is �STUFFING� Because the scheduler

is a bit sluggish to spin around to spot active TAs, it does

make sense to feed more than one task to a TA, and then wait

for the results.

#

#

There are also a few flags directing various things

#

QueueOnly:

Existence directs threads created under this clause *NEVER* to

auto-start with any timeout mechanism. Usage of ETRN methods

is required for the thread to start!

#

WakeupRestartOnly:

Existence directs threads created under this clause to start

at the arrival of the first message to the thread, but in case

the thread exists, and is in �WAKEUP DELAY� state, new arrival

does not start the thread.

#

AgeOrder:

This directs the queue *always* to run in strict arrival time

order. It might not make sense in all situations, though..

Originally the system ran always by permuting the thread order

before running TAs so that if some message causes the thread to

hang, others will get processed past it.

#

ByHost:

The command-line of the clause has �$host� expansion in it, OR

the channel-part of the clause selector has wild-cards in it, (or

the user decided to have �byhost� directive just for the fun of it.)

250

Appendix B. Scheduler's Con�guration File Samples

Switching TAs in between threads might not be advised..

(well, use of �$host� isn't advisable in general..)

(also, having wild-cards at the channel-part is not advised..)

#

ByChannel:

The command-line of the clause has �$channel� expansion in it, (or

the user decided to have �byhost� directive just for the fun of it.)

This flag is not really used anywhere.

#

#

======== Some external parameters - name starts from column 0, and =====

======== always begins with "PARAM" ====================================

#

MAILQv2 authentication database file reference:

If you define this (like the default is), and the file exists,

scheduler mailq interface goes to v2 mode.

(Nonexistence of this file A) leaves system running, B) uses MAILQv1

interface along with its security problems.)

#

PARAMauthfile = "${MAILSHARE}/scheduler.auth"

#PARAMmailqsock = "UNIX:/path/to/mailq.sock"

#PARAMmailqsock = "TCP:174"

Time for accumulating diagnostic reports for a given message, before

all said diagnostics are reported -- so that reports would carry more

than one diagnostic in case of multi-recipient messages.

#PARAMglobal-report-interval = 15m

#

==

#

#

Default parameter boilerplate, following values are in use in

all operational channel/host clauses, unless overridden in them..

#

/ interval=1m

idlemax=4m # Max lifetime of idled TA before it is killed

expire messages after 3 days without full delivery

expiry=3d

when the scheduler gets to the end of the retry sequence,

it starts over at some random point in the middle. The

numbers are factors of the scheduling interval.

retries="1 1 2 3 5 8 13 21 34"

no default limits on simultaneous transport agents or

connections to a particular host

maxchannel=0

maxring=20

#

maxta=0 # Let it be automagically determined

#

default uid/gid of transport agents

251

Appendix B. Scheduler's Con�guration File Samples

user=root

group=daemon

#

A flag telling about queue-order..

#

ageorder

overfeed=150

#

Possible nice/setpriority values in case one wants to run

the scheduler at higher scheduling priority, than TA programs:

#

"priority" sets ABSOLUTE value, and requires setpriority(2)

system call. "nice" is -- well: nice(2)

#

nice=2

##priority=0

#

"syspriority"/"sysnice" set the value for the scheduler process

itself, and are not inherited from the default boilerplate to

other parameter blocks.

#

sysnice=-2

syspriority=-2

Deferred delivery is handled by this transport agent. Deferrals are low

priority, but they tend to bunch up. The 1 channel slot means there will

be lots of contention, and typical checking intervals will be a bit higher

than what is specified (due to waiting for a free slot).

hold/*

interval=5m

maxchannel=1

command=hold

BITNET delivery methods

defrt1/*

maxchannel=3

command="sm -c $channel defrt1"

bsmtp3/*

maxchannel=3

command="sm -c $channel bsmtp3"

bsmtp3nd/*

maxchannel=3

command="sm -c $channel bsmtp3nd"

bsmtp3rfc/*

maxchannel=3

command="sm -c $channel bsmtp3"

bsmtp3ndrfc/*

maxchannel=3

command="sm -c $channel bsmtp3nd"

#

Local delivery: files, processes, user mail

#

252

Appendix B. Scheduler's Con�guration File Samples

Parameterless "local/file*" will get same values, as

"local/pipe*" immediately following it has !

#

local/file*

local/pipe*

interval=5m

idlemax=9m

Originally we had 3 hour expiry, but if your local system goes to

a fizz (freezes, that is), your local mail may start to bounce

before anybody notices anything...

expiry=3d

want 20 channel slots, but only one HOST

maxchannel=15

maxring=5

#

Do MIME text/plain; Quoted-Printable -> text/plain; 8BIT

conversion on flight! (Can't use CYRUS, nor PROCMAIL here!)

command="mailbox -8"

#

This fallback "local/*" can be used to yield different local

delivery mechanism -- mailbox / CMU cyrus IMAP server / procmail

#

The latter two can not do deliveries to explicite files / pipes,

thus you need the "local/file*" and "local/pipe*" above.

#

local/*

interval=5m

idlemax=9m

Originally we had 3 hour expiry, but if your local system goes to

a fizz (freezes, that is), your local mail may start to bounce

before anybody notices anything...

expiry=3d

want 20 channel slots, but only one HOST

maxchannel=15

maxring=5

#

Do MIME text/plain; Quoted-Printable -> text/plain; 8BIT

conversion on flight!

command="mailbox -8"

Or with CYRUS server the following might do:

#command="sm -8c $channel cyrus"

Or with PROCMAIL as the local delivery agent:

#command="sm -8c $channel procm"

Sometimes we may want to PUNT all out to somewhere without regarding

on what the routing said:

#

smtp/*

maxchannel=199

maxring=5

command="smtp -F [192.89.123.25] -l ${LOGDIR}/smtp.punt"

This is a FAST EXPIRY test case.. Will always cause bounce, btw.

(those machines are cisco routers, which don't have smtp-servers..)

253

Appendix B. Scheduler's Con�guration File Samples

smtp/*-gw.funet.fi

maxchannel=0

maxring=5

expiry=1m

interval=15s

retries="1"

skew=1

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.rutgers.edu

maxchannel=199

maxring=10

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.edu

maxchannel=199

maxring=20

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.com

maxchannel=199

maxring=30

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.uk

maxchannel=199

maxring=8

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.ca

maxchannel=199

maxring=10

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.{se,dk,is,no}

maxchannel=199

maxring=20

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.de

maxchannel=199

maxring=10

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.gov

maxchannel=199

maxring=5

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.mil

maxchannel=199

maxring=5

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.net

maxchannel=199

maxring=10

command="smtp -s" # -l ${LOGDIR}/smtp"

smtp/*.org

maxchannel=199

maxring=10

command="smtp -s" # -l ${LOGDIR}/smtp"

Within FUNET we have a bit longer expiry..

smtp/*funet.fi

maxchannel=199

254

Appendix B. Scheduler's Con�guration File Samples

maxring=9

maxta=2

interval=10m

retries="1 1 2 3 5 8 13 21 34"

skew=1

Do FORCED MIME-decoding into C-T-E: 8BIT

command="smtp -8sl ${LOGDIR}/smtp"

Within our organization we care more about speed and capacity than connections

The maxchannel value should be larger than the value used by smtp/*, to avoid

some potential state and phase problems in the queues.

smtp/*.fi

maxchannel=199

maxring=20

interval=10m

retries="1 1 2 3 5 8 13 21 34"

skew=1

command="smtp -s" # -l ${LOGDIR}/smtp"

#

Connections to the outside shouldn't duplicate effort so we only allow one

per destination.

#

smtp/*

maxchannel=199

maxring=50

command="smtp -s" # -l ${LOGDIR}/smtp"

#

Special channel which LOGS all outgoing protocol sessions, so that

admin can divert any domain to this channel in case logging is desired.

#

smtp-log/*

maxchannel=199

maxring=50

command="smtp -c $channel -s -l ${LOGDIR}/smtp-log"

#

LMTP (RFC 2033) protocol driver with presumed "standard" port of 2525.

#

smtp-lmtp/*

maxchannel=199

maxring=20

interval=1m

retries="1 3 7 15"

command="smtp -c $channel -M -x -p 2525 -s -l ${LOGDIR}/smtp-lmtp"

#

These messages will go only into the queue, and need explicite

SMTP mediated ETRN request, before they become flushed out.

#

smtp-etrn/*

maxchannel=199

maxring=20

interval=1h

255

Appendix B. Scheduler's Con�guration File Samples

retries="12"

queueonly

command="smtp -c $channel -s" # -l ${LOGDIR}/smtp-etrn"

#

Destinations desired to use TLS (a.k.a. SSL) encryption can be

run like this example shows. There are two possibilities about

REQUIRING the TLS encapsulation; that detail is configured inside

the �smtp-tls.conf� file.

#

smtp-tls/*

maxchannel=199

maxring=20

interval=1h

retries="12"

queueonly

command="smtp -c $channel -s -S ${MAILSHARE}/smtp-tls.conf" # -l ${LOGDIR}/smtp-tls"

smtpx is a channel where the delivery is done without checking at MXes;

rather only on A/AAAA (address) entries:

smtpx/*

maxchannel=90

maxring=10

command="smtp -c $channel -x -s" # -l ${LOGDIR}/smtpx"

Connections to places which sit behind broken firewalls, e.g. Cisco PIX

versions with allowing EHLO to go thru with feature reply, but then

rejecting all ESMTP protocol features listed at that reply...

smtp77/*

maxchannel=199

maxring=50

command="smtp -c $channel -77 -s" # -l ${LOGDIR}/smtp77"

Combination of smtp77 and smtpx

smtp77x/*

maxchannel=199

maxring=50

command="smtp -c $channel -77 -x -s" # -l ${LOGDIR}/smtp77x"

Connections to places we want to drive 8-bit-clean channel to

independent of what EHLO tells (or does not tell)

smtp8/*

maxchannel=199

maxring=50

command="smtp -c $channel -8 -s" # -l ${LOGDIR}/smtp8"

Combination of smtp8 and smtpx

smtp8x/*

maxchannel=199

maxring=50

command="smtp -c $channel -8 -x -s" # -l ${LOGDIR}/smtp8x"

Error messages. Delivery can be retried at leisure.

error/*

interval=5m

idlemax=2m

maxchannel=5

256

Appendix B. Scheduler's Con�guration File Samples

command=errormail

UUCP delivery. The "sm" transport agent picks the first host it sees and

will select further recipient addresses with that host only. We tell

the scheduler this with the "byhost" boolean, to avoid a staggered delivery

effect if the scheduler has to discover this on its own.

uucp/* maxchannel=5

command="sm -8c $channel uucp"

News delivery. Hostname is always the same here.

usenet/* maxchannel=2

command="sm -8c $channel usenet"

UBC EAN X.400 gateway. See comment at UUCP.

ean/* maxchannel=1

command="sm -c $channel ean"

BitBucket channel

bitbucket/*

maxchannel=1

command="sm -c $channel bitbucket"

smtpgw-*/*

maxchannel=30

maxring=30

command="sm -8c $channel $channel"

B.2. scheduler.auth

#

APOP-like authentication control file for the ZMailer scheduler.

#

Fields are double-colon (':') separated, and are:

- Username

- PLAINTEXT PASSWORD (which must not have double-colon in it!)

- Enabled attributes (tokens, space separated)

- Addresses in brackets plus netmask widths: [1.2.3.4]/32

#

Same userid CAN appear multiple times, parsing will pick the first

instance of it which has matching IP address set

#

The default-account for 'mailq' is 'nobody' with password 'nobody'.

Third field is at the moment a WORK IN PROGRESS!

#

SECURITY NOTE:

OWNER: root

PROTECTION: 0600

#

Attribute tokens:

ALL well, a wild-card enabling everything

SNMP "SHOW SNMP"

QQ "SHOW QUEUE SHORT"

257

Appendix B. Scheduler's Con�guration File Samples

TT "SHOW QUEUE THREADS", "SHOW THREAD channel/host"

ETRN "START THREAD channel host"

KILL "KILL THREAD channel host", "KILL MSG spoolid"

#

- "nobody" via loopback gets different treatment from

"nobody" from anywhere else.

#

nobody:nobody:SNMP QQ TT ETRN: [127.0.0.0]/8 [ipv6.0::1]/128

nobody:nobody:SNMP ETRN: [0.0.0.0]/0 [ipv6.0::0]/0

#watcher:zzzzz:SNMP QQ TT ETRN: [127.0.0.0]/8 [192.168.0.1]/32

#root:zzzzzzz:ALL: [127.0.0.0]/8 [192.168.0.2]/32

258

Appendix C. Using ZMailer with Mailinglist

Managers

%% \section{Using ZMailer with Mailinglist Managers}

Text to be inserted here.

259

Appendix C. Using ZMailer with Mailinglist Managers

260

Appendix D. Adding new transport agents

%% \section{Adding new transport agents}

Text to be inserted here.

261

Appendix D. Adding new transport agents

262

Appendix E. Internal File Data Formats

E.1. ZMailer's Files and Formats

Figure E-1. ZMailer's $POSTOFFICE/ directories and �les

$POSTOFFICE/router/

$POSTOFFICE/queue/

$POSTOFFICE/transport/

Submit by rename() into

the message, it rename()s
the file into the "queue"−dir,
and creates control file into
the "transport" directory.

new files in its directory,
it starts scheduling and
submission of them to the
delivery.

12345−3

12345−3

12345−3
When the Scheduler sees

When Router finishes with

Router’s directory

12345

$POSTOFFICE/public/

12345 (/usr/lib/sendmail)
User creates mail

$POSTOFFICE/input/
Possible pre−router spool for e.g.
some email virus scanner

E.2. Envelope Header Lines

As the router picks up message �les from a speci�c directory. Normally, message �le names can be

arbitrary valid �le names, and indeed this is convenient when debugging. However, because the

router daemon scans its own current directory, miscellaneous output from the router process may

show up in this directory (e.g. pro�ling data, or core dumps (unthinkable as that is)). Furthermore, it

is useful to be able to hide �les from the router scanning (indeed the router may wish to do so

itself).

When the process is scanning for message �les, it only considers �le names that have a certain

format. Speci�cally, the message �le name must start with a digit. This method was chosen to

accomodate the message �le names, as generated by the standard submission interface library

routines, which will be strings of digits representing the message �le's inode number.

A message �le contains three sections: the message envelope, the message header, and the message

body (in that order). he message body is separated from the previous sections by a blank line. The

message body may be empty, and either of the message envelope or message header may be empty.

The restriction on the latter situation, is that one of those sections must contain destination

information for the message.

263

Appendix E. Internal File Data Formats

The message envelope and the message header have very similar syntax. The only difference is that

while the message header must adhere to RFC822, the message envelope header �elds are

terminated by whitespace (� �) instead of a colon (�:�). The semantics of the two message �le

sections is quite different, and will be covered later.

The message envelope headers are used to carry meta-information about the message. The goal is to

carry transport-envelope information separate from message (RFC-822) headers, and body. At �rst

the message starts with a set of envelope headers (*-pre�x denotes optional):

*external \n

*rcvdfrom %s (%s) \n

*bodytype %s \n

*errormsg \n

*with %s \n

*identinfo %s \n

Either:

from <%s> \n

Or:

channel error \n

*envid %s \n

*notaryret %s \n

Then for each recipient pairs of:

*todsn [NOTIFY=...] [ORCPT=...] \n

to <%s> \n

Just before the data starts, a magic entry:

env-end \n

Then starts the message RFC-822 headers, and below it, the body.

The header �elds recognized by ZMailer in the message envelope are:

bodytype word

not used. Compatibility with the sendmail feature

channel word

sets the channel corresponding to the message origin(*), usually as �channel error�

comment string

arbitrary comment

env-end

separator �ag-word in between the envelope and the RFC822 headers

env-eof

alias to env-end

errormsg

Special internal �ag-word telling that the message in question has been produced by scheduler

or errormail, and is considered an error message.

264

Appendix E. Internal File Data Formats

This distinction can be used at routing to determine use of different default route lookup key for

recipients in this case. See �le p-routes.cf.

envid xtext

ESMTP DSN ENVID value

external

A �ag-word indicating the external origin of a message

from �address�

a source address(*)

fullname �phrase�

sets the full name of the local sender

identinfo �string�

The SMTP server's ident lookup result, this does not guarantee anything about the sender

though.

loginname �word�

requests using this mail id for the local sender

notaryret �word�

ESMTP DSN RET=word, either �FULL�, or �HDRS�

rcvdfrom �domain� (opt comment)

An optional envelope entry, which sets �Received:� header's �from� �eld value.

This should only be used on messages that are originated thru �trusted� mechanisms, and

especially not be used when the message is originated by some John Doe in the system. (E.g.

this is reserved for smtpserver and friends, not for arbitrary users.)

to �address-list�

Normal recipient address list; usually used in form of listing one address in angle braces:

to <user@somewhere>

todsn �phrase�

ESMTP DSN recipient parameters. Note: this must be before the recipient �to� line for which

this gives the extra parameters.

user �local-part�

Optional envelope entry telling who the message originating user was. The system is extremely

suspicuous on this entry, and will check it against system account database, unless the spool �le

owner uid is known to belong to trusted users.

verbose ��lename�

This optional envelope entry tells the router, what �lename the sending client expects the

subsystems to use as a feedback channel for reports concerning the �le.

This ��lename� is located into $POSTOFFICE/public/ directory, and has been preopened by

the same uid as has created the message spool �le.

265

Appendix E. Internal File Data Formats

via �word�

An optional envelope entry that will de�ne �Received:� header's optional �via� tag telling

what physical transport mechanism was used.

Usually this entry is not used. (For an exceptions, see rmail and listexpand utility.)

with �word�

An optional envelope entry that will de�ne �Received:� header's optional �with� tag telling

what protocol was used.

Unlike RFC-822 tells, ZMailer supports only one �with� instance.

The (*)'s beside the descriptions indicate this is a privileged �eld. That is, the action will only

happen if ZMailer trusts the owner of the message �le (*Note Security: security. XREF ??). As with

a normal RFC822 header, other �elds are allowed (though they will be ignored), and case is not

signi�cant in the �eld name. The router will do appropriate checks for the �elds that require it.

With this knowledge, we can now appreciate the minimal message �le:

====================

to bond

====================

This will cause an empty message to be sent to bond. A slightly more sophisticated version is:

====================

from m

to bond

via courier

env-end

From: M

To: Bond

Subject: do get a receipt, 007!

You are working for the Government, remember?

====================

Notice that there is no delimiter between the message envelope and the message header. A more

sophisticated example in the same vein:

====================

from ps/d-ops

to <007@sis.mod.uk>

env-end

From: M <d-ops@sis.mod.uk>

Sender: Moneypenny <ps/d-ops@sis.mod.uk>

To: James Bond <007@sis.mod.uk>

Subject: where are you???!

Classification: Top Secret

Priority: Flash

We have another madman on the loose. Contact "Q" for usual routine.

266

Appendix E. Internal File Data Formats

====================

If the Classi�cation: header is paid attention to in ZMailer, this requires that the router recognize it

in the message header, and take appropriate action. In general the router can extract most of the

information in the message header, and make use of it if the information is lacking in the envelope.

The envelope headers in the above message are super�uous, since the same information is contained

in the message header. Using the following envelope headers would be exactly equivalent to using

the ones shown above (assuming the local host is sis.mod.uk):

====================

From Moneypenny <ps/d-ops@sis.mod.uk>

To James Bond <007@sis.mod.uk>

...

====================

ZMailer will extract the appropriate address information from whatever the �eld values are, as long

as they obey the de�ned syntax (indicated in the list of recognized envelope �elds above). ZMailer

will complain in case of unexpected errors in the envelope headers.

The message body is not interpreted by ZMailer itself. As far as the router is concerned, it can be

arbitrary data. However, certain Transport Agents may require limitations on the message body data.

For example, the SMTP only deals with ASCII data with a small guaranteed line length.

E.3. Message Control File

A message control �le is a �le created by the router to contain all the information necessary for

delivery of a message submitted in a corresponding message �le. It is interpreted by the scheduler,

which needs to know at all times which messages are pending to go where, and how. It is also

interpreted by one or more Transport Agents, possibly concurrently, that extract the delivery

information relevant to their purpose.

The concurrency aspect means that the Transport Agents must cooperate on a locking protocol to

ensure that delivery to a particular destination is attempted by only one Transport Agent at a time,

and a status protocol to ensure unique success or failure of delivery for each destination. There are

potentially many ways to implement such protocols, but, in the spirit of simplicity, ZMailer uses a

control �le as a form of shared memory. Speci�c locations within each control �le are reserved for

�ags that indicate a speci�c state for their associated destination address. The rest is taken care of by

the I/O semantics when multiple processes update the same �le.

Apart from necessary envelope and control information, a control �le also contains the new message

header for the message, which contains the header addresses as rewritten by the router. Since a

message may have several destinations with incompatible address format requirements, there may be

several corresponding groups of message headers. This will be illustrated by the sample control �le

shown in the following subsection.

E.3.1. Format

A control �le consists of a sequence of �elds. Each �eld starts at the beginning of a line (i.e. at byte 0

or after a Newline), and is identi�ed by the appearance of a speci�c character in that location. This id

267

Appendix E. Internal File Data Formats

character is normally followed by a byte containing a tag value (semaphore �ag), followed by the

�eld value.

Here is a simple control �le produced by a test message, just before it was removed by the Scheduler:

====================

@ 0x00000007

i 24700

o 72

l <88Jan10.003129est.24700@bay.csri.toronto.edu>

e Rayan Zachariassen <rayan>

s local - rayan

r+ local - rayan 2003

m

Received: by bay.csri.toronto.edu id 24700; Sun, 10 Jan 88 00:31:29 EST

From: Rayan Zachariassen <rayan>

To: rayan, rayan@ephemeral

Subject: a test

Message-Id: <88Jan10.003129est.24700@bay.csri.toronto.edu>

Date: Sun, 10 Jan 88 00:31:24 EST

s local - rayan@bay.csri.toronto.edu

r+ smtp ephemeral.ai.toronto.edu rayan@ephemeral.ai.toronto.edu 2003

m

Received: by bay.csri.toronto.edu id 24700; Sun, 10 Jan 88 00:31:29 EST

From: Rayan Zachariassen <rayan@csri.toronto.edu>

To: rayan@csri.toronto.edu, rayan@ephemeral.ai.toronto.edu

Subject: a test

Message-Id: <88Jan10.003129est.24700@bay.csri.toronto.edu>

Date: Sun, 10 Jan 88 00:31:24 EST

====================

The id character values are de�ned in the mail.h system header �le, which currently contains:

/* These are in order (roughly) what the router writes out. */

#define _CF_FORMAT '@' /* What format variant are we ?? */

#define _CF_FORMAT_TA_PID 0x00000001 /* At 'r' or 'X' lines */

#define _CF_FORMAT_DELAY1 0x00000002 /* At 'r' or 'X' lines */

#define _CF_FORMAT_MIMESTRUCT 0x00000004 /* The 'M' block */

#define _CF_FORMAT_KNOWN_SET (_CF_FORMAT_DELAY1|_CF_FORMAT_TA_PID | \

_CF_FORMAT_MIMESTRUCT)

#define _CF_VERBOSE 'v' /* log file name for verbose log (mail -v) */

#define _CF_MESSAGEID 'i' /* inode number of file containing message */

#define _CF_BODYOFFSET 'o' /* byte offset into message file of body */

#define _CF_LOGIDENT 'l' /* identification string for log entries */

#define _CF_BODYFILE 'b' /* alternate message file for new body */

#define _CF_ERRORADDR 'e' /* return address for error messages */

#define _CF_OBSOLETES 'x' /* message id of message obsoleted by this */

#define _CF_TURNME 'T' /* trigger scheduler to attempt delivery now */

#define _CF_SENDER 's' /* sender triple (channel, host, user) */

#define _CF_RECIPIENT 'r' /* recipient n-tuple, n >= 3 */

#define _CF_DSNRETMODE 'R' /* DSN message body return control */

#define _CF_XORECIPIENT 'X' /* one of XOR set of recipient n-tuples */

268

Appendix E. Internal File Data Formats

#define _CF_RCPTNOTARY 'N' /* DSN parameters for previous recipient */

#define _CF_DSNENVID 'n' /* DSN 'MAIL FROM<> ENVID=XXXX' data */

#define _CF_MSGHEADERS 'm' /* message header for preceeding recipients */

#define _CF_MIMESTRUCT 'M' /* compacted MIME structure data for message */

#define _CF_DIAGNOSTIC 'd' /* diagnostic message for ctlfile offset */

/* The following characters may appear in the second column after most _CF_* */

#define _CFTAG_NORMAL ' ' /* what the router sets it to be */

#define _CFTAG_LOCK '~' /* that line is being processed, lock it */

#define _CFTAG_OK '+' /* positive outcome of processing */

#define _CFTAG_NOTOK '-' /* something went wrong */

#define _CFTAG_DEFER _CFTAG_NORMAL /* try again later */

There is one �eld per line, except for _CF_MSGHEADERS, and _CF_MIMESTRUCT, which have some

special semantics described below.

The following describes the �elds in detail:

@ hex-encoded-bit�agset

This carries a hex-encoded bit�ag set which is used by the scheduler, and Transport Agents to

detect if the router produces �les with incompatible features to what the latter programs know.

This is used to ensure that there stays a capability relation of:

router <= scheduler <= transport-agents

For example:

@ 0x00000007

v relative-�le-path

Log �le name for verbose log (mail -v):

v ../public/v_some_magic_tmpfile

i �lename

This �eld identi�es the message �le corresponding to this control �le. It is the name of the

message �le in the QUEUE directory ($POSTOFFICE/queue/).

This is typically the same as the inode number for that �le, but need not be. It is used by

Transport Agents when copying the message body, and by the scheduler when unlinking the

�le after all of the destination addresses have been processed.

For example:

i 21456-789

269

Appendix E. Internal File Data Formats

$POSTOFFICE/transport/12345

i 12345

r chan1 host1 data...

r chan1 host1 data...

r chan2 host2 data...

Content

$POSTOFFICE/queue/12345

Headers

information

Message body

Processing

"Logical reference"

 (Not of any kind of filesystem

 link object. Just the name of

 of the file in another directory.)

o decimal-number

Speci�es the byte offset of the message body in the message �le. It is used by Transport Agents

in order to copy the message body quickly, without parsing the message �le.

For example:

o 466

l message-id-string

The �eld value is an uninterpreted string which should pre�x all log messages and accounting

records associated with this message. This value is typically the message id string.

For example:

l <88Jan6.103158gmt.24694@sis.mod.uk>

b �lename

Alternate message �le for new body. (Currently not supported!)

e error-address

Gives an address to which delivery errors should be sent. The address must be a RFC822

mailbox.

For example:

e "Operations Directorate" <d-ops@sis.mod.uk>

x message-id-string

Message id of message obsoleted by this.

T

This is mainly smtpserver created message directing the scheduler to trigger sending of given

queue (or other parameter) right (resources permitting). This is mainly superceded byMAILQv2

ETRN IPC mechanism.

For example:

T some.specific.domain (trigger originator IP address)

270

Appendix E. Internal File Data Formats

s sender-quad

This �eld speci�es an originator (sender) address triple, in the sequence: previous channel,

previous host, return address. It remains the current sender address until the next instance of this

�eld.

Since there can only be one sender of a message, multiple instances of the �eld will correspond

to different return address formats as produced by the crossbar algorithm in the router.

For example:

s smtp sis.mod.uk @lab.sis.mod.uk:q@deadly-sun.lab.sis.mod.uk

s uucp sisops lab.sis.mod.uk!deadly-sun.lab.sis.mod.uk!q

r 10-spaces rcpt-quad

This �eld speci�es a destination (recipient) address triple, in the sequence: next channel, next

host, address for next host. Optional information to be passed to the Transport Agent may be

placed after the mandatory �elds; this currently refers to the delivery privilege of the destination

address. Since the optional values of this �eld are only interpreted by the Transport Agent,

changes in what the router writes must be coordinated with the code of the Transport Agents

that might interpret this �eld.

For recipient processing interlocks, and delay report �ags there is 6+4 spaces before the actual

recipient address quad.

For example:

==123456ABCD....

r local - bond 0

r uucp uunet sisops!bond -2

X

One of XOR set of recipient 4-tuples. (Not used so far.)

N

DSN parameters for previous recipient.

For example:

==123456ABCD....

r local - bond 0

N ORCPT=rfc822;bond NOTIFY=DELAY,FAILURE

R

DSN message body return control �ag. (While this is stored once per every message

For example:

==123456ABCD....

r local - bond 0

N ORCPT=rfc822;bond NOTIFY=DELAY,FAILURE

R HDRS

n

DSN MAIL FROM<..> ENVID=XXXX data.

For example:

==123456ABCD....

r local - bond 0

271

Appendix E. Internal File Data Formats

N ORCPT=rfc822;bond NOTIFY=DELAY,FAILURE

R HDRS

n XXXX

m

Apart from a message body, a Transport Agent needs the message headers to construct the

message it delivers. These message headers are stored as the value of this �eld.

Since message headers obviously can span lines, the syntax for this �eld is somewhat different

than for the others. The �eld id is immediately followed by a newline, which is followed by a

complete set of message headers. These are terminated (in the usual fashion) by an empty line,

which also terminates this �eld.

In the following example, the last line of text is followed by an empty line, after which another

�eld may start:

m

From: M

To: Bond

Subject: do get a receipt, 007!

s ...

r ...

M

This is another multi-line structure reserved for latter support of pre-scanned MIME structure

data so that the transport-agents have easier work ahead of them when planning things like

content transformations during the transport action. (12-Mar-2001)

d

This �eld is not written by the router. It is written by the scheduler or Transport Agents to

remember errors associated with speci�c addresses. The �eld value has two parts, the �rst being

the byte offset in the control �le of the destination (recipient) address causing the error, and the

rest of the line being an error message. The Transport Agents discover these errors and report

them to the scheduler.

The scheduler will collect them and report them to the error return address (if any) after all the

destinations have been processed.

For example: (FIXME! XREF to detail data ?)

d 878 No such local user: 'bond'.

It should be noted, that in sender and recipient �elds the �rst two �eld values (channel and host)

cannot contain embedded spaces, but the third �eld value (the address) may. Therefore, in the

presence of extra �elds, parsing within Transport Agents must be cautious and not assume that an

address does not contain spaces.

As mentioned, the second byte of most �elds are used for concurrency control and status indication.

This tag byte can contain several values that indicate current or previous activity. The �elds where

this is relevant are the destination (recipient) address and diagnostic �elds. The tag values are de�ned

in the �mail.h� �le mentioned previously, as follows:

#define _CFTAG_NORMAL ' ' /* what the router sets it to be */

#define _CFTAG_LOCK '~' /* that line is being processed, lock it */

#define _CFTAG_OK '+' /* positive outcome of processing */

272

Appendix E. Internal File Data Formats

#define _CFTAG_NOTOK '-' /* something went wrong */

#define _CFTAG_DEFER _CFTAG_NORMAL /* try again later */

The extract above is self-explanatory.

A message control �le will normally contain a preamble that speci�es information about the

associated message �le, the message body offset, an error return address, and a log entry tag. After

this comes a repeated sequence of: sender address �eld, recipient address �elds, and the message

header corresponding to these recipients. After as many of these groups as are necessary, any

diagnostic �elds will be appended to the end of the control �le. The restrictions on the sequence of

addresses and message headers, are that a sender address �eld must precede any recipient address

�eld, and a recipient address �eld must (immediately) precede any message header �eld, and no

sender or recipient addresses may follow the last message header �eld.

E.4. Database File Formats

E.4.1. The dbases.conf �le

Sample of $MAILVAR/db/dbases.conf �le:

#|

#| This configuration file is used to translate a semi-vague idea

#| about what database sources (in what forms) are mapped together

#| under which lookup names, and what format they are, etc..

#|

#| This is used by 'zmailer newdb' command to generate all databases

#| described here, and to produce relevant .zmsh scripts for the

#| router to use things. The 'zmailer newdb' invocation does not mandate

#| router restart in case the database definitions have not changed

#| (reverse is true: If definitions are added/modified/removed, the router

#| MUST be restarted)

#|

#|Fields:

#| relation-name

#| dbtype(,subtype)

#| dbpriv control data (or "-")

#| newdb_compile_options (-a for aliases!)

#| dbfile (or "-")

#| dbflags (or "-") ... (until end of line)

#|

#| The dbtype can be "magic" '$DBTYPE', or any other valid database

#| type for the Router. Somewhat magic treatment (newdb runs) are

#| done when the dbtype is any of: *DBTYPE/dbm/gdbm/ndbm/btree

#|

#| The "dbfile" need not be located underneath of $MAILVAR, as long as

#| it is in system local filesystem (for performance reasons.) E.g.

#| one can place one of e.g. aliases files to some persons directory.

#|

#| At dbflags (until end of the line), characters ':' and '%' have special

#| meaning as their existence generates lookup routines which pass user's

273

Appendix E. Internal File Data Formats

#| optional parameters. See documentation about 'dblookup'.

#|

#|Example:

#|

#|Security sensitive ones ("dbpriv" must be defined!)

#| aliases $DBTYPE 0:0:644 -la $MAILVAR/db/aliases -lm

#| aliases $DBTYPE root:0:644 -la $MAILVAR/db/aliases-2 -lm

#| fqdnaliases $DBTYPE root:0:644 -la $MAILVAR/db/fqdnaliases -lm

#| userdb $DBTYPE root:0:644 -la $MAILVAR/db/userdb -lm

#|

#|Security insensitive ones ("dbpriv" need not be defined!)

#| fqdnaliasesldap ldap - - $MAILVAR/db/fqdnalias.ldap -lm -e 2000 -s 9000

#| fullnamemap $DBTYPE - -l $MAILVAR/db/fullnames -lm

#| mboxmap $DBTYPE - -l $MAILSHARE/db/mboxmap -lm

#| expired $DBTYPE - -l $MAILVAR/db/expiredaccts -lm

#| iproutesdb $DBTYPE - -l $MAILVAR/db/iproutes -lmd longestmatch

#| routesdb $DBTYPE - -l $MAILVAR/db/routes -lm%:d pathalias

#| thishost $DBTYPE - -l $MAILVAR/db/localnames -lm%d pathalias

#| thishost unordered - - $MAILVAR/db/localnames -ld pathalias

#| thishost bind,mxlocal - - - -ld pathalias

#| otherservers unordered - - $MAILVAR/db/otherservers -lmd pathalias

#| newsgroup $DBTYPE - -l $MAILVAR/db/active -lm

aliases $DBTYPE 0:0:644 -la $MAILVAR/db/aliases -lm

fqdnaliases $DBTYPE root:0:644 -la $MAILVAR/db/fqdnaliases -lm%

userdb $DBTYPE root:0:644 -la $MAILVAR/db/userdb -lm

routesdb $DBTYPE - -l $MAILVAR/db/routes -lm%:d pathalias

thishost $DBTYPE - -l $MAILVAR/db/localnames -lm%d pathalias

#| ===

#| Set of boilerplate tail-keepers, these lookups fail ALWAYS.

#| These are given because if user ever removes any of the relations

#| mentioned above, the generated "RELATIONNAME.zmsh" script won't

#| just magically disappear!

#| ===

aliases NONE - - - -

expired NONE - - - -

fqdnaliasesldap NONE - - - -

fqdnaliases NONE - - - -

fullnamemap NONE - - - -

iproutesdb NONE - - - -

newsgroup NONE - - - -

otherservers NONE - - - -

routesdb NONE - - - -

thishost NONE - - - -

userdb NONE - - - -

#| NOTE: mboxmap MUST NOT exist at all if its secondary-effects

#| are to be avoided!

274

Appendix E. Internal File Data Formats

E.4.2. Aliases File

For relation: aliases

Syntax of this �le is simple: blank lines, and comments with �#� character at column 1 are ignored,

the key is non-white-space string of characters terminating on double-colon + whitespace (actually

'"quoted string":' is also valid key!), rest of the line (and possible continuation lines) are data.

postmaster: root

postoffice: root

MAILER-DAEMON: root

mailer: postmaster

postmast: postmaster

proto: postmaster

sync: postmaster

sys: postmaster

daemon: postmaster

bin: postmaster

uucp: postmaster

ingress: postmaster

audit: postmaster

autoanswer: "|@MAILBIN@/autoanswer.pl"

nobody: /dev/null

no-one: /dev/null

"no body": /dev/null

junk-trap: /dev/null

#test-gw: "|/..."

#test.gw: "|/..."

Doing expansion lists in sendmail(8) style is not suggested, although we certainly can do it. There is

a better mechanism in the ZMailer to handle simple feats like these that sendmail(8) systems do by

placing the �le containing recipient addresses into the directory $MAILVAR/lists/. This directory

must have protection of 2775 or stricter, and the list�le must have protection of 664 or stricter for

-request/owner-/*-owner auto-aliases to work. � but to sendmail style lists:

listname: "/usr/lib/sendmail -fowner-listname listname-dist"

owner-listname: root # Well, what would you suggest for a sample ?

listname-owner: owner-listname

listname-request: root

listname-dist: ":include:/dev/null"

E.4.3. FQDNAliases File

This is syntactically alike the aliases database (the double-colon + whitespace terminate the key),

rest of the line (and possible continuation lines) are data, however it can have some interesting keys:

local@domain:

Matches given address, including possible incoming local+tag@domain versions.

275

Appendix E. Internal File Data Formats

@domain:

This matches all addresses with given domain.

The result data may contain �%1� which is �lled with user part of the input address, example:

@domain: %1@domain2

It can thus be used to map e.g. user@domain1 to user@domain2.

The main difference with sendmail's virtuser method is that this is generic alias type mapper, e.g. it

can result in multiple addresses going out, or programs be driven, or. . .

E.4.4. Routes File

For relation: routesdb

Sampling here the default boilerplate �$MAILVAR/db/routes� �le:

Routing Configuration File

#

Entries in this file are checked first by router.cf.

They have the form:

name channel!next_destination

A leading . on the name indicates that all subdomains match as well

#

We have TWO different fallback lookup tags:

.:ERROR for cases where ERROR MESSAGES we generated are being routed

. for general case

#

This dictomy is due to need to route everything by explicite tables,

EXCEPT in case of errors when '.' maps to 'error!something'

("We know to whom we route, others get error report back.")

#

To generate runtime BINARY database of this source, issue command:

$MAILBIN/newdb $MAILSHARE/db/routes

or in this directory with usual configuration:

../bin/newdb routes

#

#

Sample route statements (and channels):

#

.foo error!cannedmsgfilename

Canned error message from $MAILSHARE/forms/cannedmsgfilename

#

.bar smtpx!

Send all traffic destined to any subdomain under this

suffix via "smtpx" channel to that domain

#

.bar smtp-etrn!

.bar smtp-tls!

.bar smtp-log!

.bar smtp77!

.bar smtp77x!

.bar smtp8!

.bar smtp8x!

Ditto

#

276

Appendix E. Internal File Data Formats

.bar smtpgw-xyz!

Drives genericish gateway function kit

#

junkdom bitbucket!

myself local!

news.domain usenet!

uunode.dom uucp!uunode

#

Usual ISP smart-host setup

. smtpx!ISP.smtp.gw

#

Not so usual - fallback to error, except for error messages

.:ERROR smtp!

. error!notourcustomer

#

E.4.5. Localnames

For relation: thishost

FIXME! WRITEME!

E.4.6. Otherservers

For relation: otherservers

FIXME! WRITEME!

E.4.7. Iproutes

For relation: iproutesdb

FIXME! WRITEME!

E.4.8. Fullnames

For relation: fullnamemap

This used to be a firstname.lastname keyed mapping database yielding login-ids, but these days

this is superceded by ability to have dots in alias keys.

Example:

firstname.lastname loginid

277

Appendix E. Internal File Data Formats

E.4.9. Userdb

For relation: userdb

FIXME! WRITEME!

E.4.10. Expiredaccts

For relation: expired

FIXME! WRITEME!

E.4.11. Active (newsgroups)

For relation: newsgroup

FIXME! WRITEME!

E.4.12. Aliases.ldap

For relation: aliases

FIXME! WRITEME!

E.4.13. Fqdnaliases.ldap

For relation: fqdnaliasesldap

FIXME! WRITEME!

E.4.14. Mailbox File

Err... Uh.. What can be said ? The standard UNIX mailbox ?

FIXME! Or was this supposed to be the MBOXMAP thing ?

E.5. Scheduler Statistics Log

The statistics log reports condenced performance oriented information in following format:

timestamp�leid

dt1dt2

state$channel/$host

81287619090401-

205

okusenet/-

278

Appendix E. Internal File Data Formats

timestamp�leid

dt1dt2

state$channel/$host

81287622890401-

107

okusenet/-

81287624490401-

101

oklocal/gopher-admin

81287624490401-

105

oksmtp/funet.�

81287655990401-

1021

oksmtp/utu.�

Where the �elds are:

timestamp

The original spool�le ctime (creation time) stamp in decimal.

fileid

Spool�le name after the router has processed it.

dt1

The time difference from spool�le ctime to scheduler control �le creation by the router.

dt2

The time difference from scheduler �le ctime to the delivery that is logged on.

state

What happened? Values: ok, ok2, ok3, error, error2, expiry

$channel/$host

Where/how it was processed.

E.6. Syslogged Log Formats

At syslog facility the system logs also material, if it has so been con�gured.

Different subsystems do different logs, they are described below.

279

Appendix E. Internal File Data Formats

E.6.1. Smtpserver's Syslog Format

The smtpserver may log in multiple formats:

INFO: connection from ...

WARN: refusing connection from ...

INFO: accepted id ... into freeze..

INFO: TASPID accepted from...

where TASPID: A spool-id that is valid throughout message lifetime in the system, and should

be long-term unique, even. (Per system.)

EMERG: smtpserver policy database problem...

ERR: MAILBIN unspeci�ed in zmailer.conf

E.6.2. Router's Syslog Format

The router does syslog() in following format:

taspid: from=<addr>, rrelay=smtprelay, size=nnn, nrcpts=nnn, msgid=str, delay=xx, xdelay=xx

Where:

taspid

The TA-SPOOL-ID � A spool-id that is valid throughout message lifetime

from=

the envelope source address

rrelay=

the message �rcvdfrom� envelope header reports.

size=

Total message size in bytes (envelope+headers+body)

nrcpts=

Number of recipients for this message

msgid=

The �Message-ID:� header content

delay=

Delay from message arrival to the system to this logging moment

280

Appendix E. Internal File Data Formats

xdelay=

Delay during processing � tells how much time was spent to process the message.

E.6.3. Transport Agent's Syslog Format

The transport agents log in following format:

taspid: to=<addr>, delay=dd, xdelay=xx, mailer=mm, relay=rr (wtt), stat=%s msg

Here the �elds are:

taspid

The ta-spool-id � A spool-id that is valid throughout message lifetime

to=

Destination address in whatever form the transport agent uses.

delay=

Delay from message arrival to the system to this logging moment

xdelay=

Delay during this processing attempt � tells how much time this time was spent to process the

message.

mailer=

Tells what �channel� was used.

relay=

Reports on which host the message is relayed thru (�wtthost�), and for SMTP, also (in

parenthesis) what was the relay's IP address.

stat=

What status was achieved: ok*, delayed, failed, ... CHECK!

msg

Arbitrary text line from whatever system is out there.

281

Appendix E. Internal File Data Formats

282

Appendix F. S/SL Language

The information in this appendix is based on �Speci�cation of S/SL: Syntax/Semantic Language� by

J.R. Cordy and R.C. Holt, December 1979 (Revised March 1980). Copyright (C) 1979, 1980 by the

University of Toronto.

This appendix describes the S/SL language which is used within several scanners of the router

system; RFC-822 object token scanner, and zmsh script language scanner to name the most

important ones.

S/SL is a programming language developed at the Computer Systems Research Group, University of

Toronto as a tool for constructing compilers. It has been used to implement scanners, parsers,

semantic analyzers, storage allocators and machine code generators. S/SL has been used to

implement compilers for Euclid, PT Pascal and Speckle, a PL/1 subset.

F.1. S/SL Introduction

S/SL is a procedure-based variable-free programming language in which the program logic is stated

using a small number of simple control constructs. It accesses data in terms of a set of operations

organized into data-management modules called mechanisms. The interface to these mechanisms is

de�ned in S/SL but their implementation is hidden from the S/SL program.

S/SL has one input stream and one output stream, each of which is strictly sequential. These streams

are organized into �tokens� each of which is read and written as a unit. An auxiliary output stream

for error diagnostics is also provided.

F.2. S/SL: Identi�ers, Strings and Integers

An S/SL identi�er may consist of any string of up to 50 letters, digits and underscores (_) beginning

with a letter. Upper and lower case letters are considered identical in S/SL, hence �aa�, �aA�, �Aa�

and �AA� all represent the same identi�er. INPUT, OUTPUT, ERROR, TYPE, MECHANISM, RULES, DO,

OD, IF, FI, END and their various lower case forms are keywords of S/SL and must not be used as

identi�ers in an S/SL program.

An S/SL string is any sequence of characters not including a quote surrounded by quotes (").

Integers may be signed or unsigned and must lie within a range de�ned by the implementation. For

example, this range could be -32767 to 32767 on a 16 bit machine.

Identi�ers, keywords, strings and integers must not cross line boundaries. Identi�ers, keywords and

integers must not contain embedded blanks.

F.3. S/SL: Comments

A comment consists of the character �%� (which is not in a string) and the characters to the right of

it on a source line.

283

Appendix F. S/SL Language

F.4. S/SL: Character Set

Since not all of the special characters used in S/SL are available on all machines, the following

alternatives to special characters are allowed.

� ! for |

� DO for {

� OD for }

� IF for [

� FI for]

F.5. S/SL: Source Program Format

S/SL programs are free format; that is, the identi�ers, keywords, strings, integers and special

characters which make up an S/SL program may be separated by any number of blanks, tab

characters, form feeds and source line bound- aries.

F.5.1. S/SL: Notation

The following sections de�ne the syntax of S/SL. Throughout the following, {item} means zero or

more of the item, and [item] means the item is optional. The abbreviation �id� is used for identi�er.

F.5.2. S/SL: Programs

An S/SL program consists of a set of de�nitions followed by a set of rules.

A program is:

[inputDefinition] [outputDefinition]

[inputOutputDefinition]

[errorDefinition] {typeOrMechanismDefinition}

RULES {rule}

END

F.5.3. S/SL: Input and Output De�nitions

An inputDe�nition is:

INPUT ":" {tokenDefinition} ";"

An outputDe�nition is:

OUTPUT ":" {tokenDefinition} ";"

284

Appendix F. S/SL Language

An inputOutputDe�nition is:

INPUT OUTPUT ":" {tokenDefinition} ";"

A tokenDe�nition is:

[string] ["=" tokenValue]

The inputDe�nition section de�nes the input tokens to the S/SL program. The outputDe�nition

section de�nes the output tokens of the program. The inputOutputDe�nition section de�nes those

tokens which are both input tokens and output tokens of the program. Tokens already de�ned in the

inputDe�nition or outputDe�nition sections must not be rede�ned in the inputOutputDe�nition

section.

The optional string which may be given in a tokenDe�nition is a synonym for the token identi�er and

can be used in place of the identi�er anywhere in the S/SL program.

Each input and output token is assigned an integer value for use in the implementation of the S/SL

program. This value may be optionally speci�ed in each tokenDe�nition. The tokenValue may be

speci�ed as an integer or as the value of any previously de�ned identi�er or string. If omitted, the

value assigned to the token is the value associated with the previous token in the class plus one. The

default value associated with the �rst input token and the �rst output token is zero. The default value

associated with the �rst input-output token is the maximum of the last token de�ned in the

inputDe�nition section and the last token de�ned in the outputDe�nition section. In this way the

default input-output token values are unique with respect to both input tokens and output tokens.

F.5.4. S/SL: Error Signals

An errorDe�nition is:

ERROR ":" {errorSignalDefinition} ";"

An errorSignalDe�nition is:

id ["=" errorValue]

Each errorSignalDe�nition de�nes an error signal which can be signalled by the S/SL program. An

integer error code value is associated with each errorId for use in the implementation of the S/SL

program. This value may be optionally speci�ed in each errorSignalDe�nition. The errorValue may

be speci�ed as an integer or as the value of any previously de�ned identi�er or string. The default

value associated with an error signal is the value associated with the previous error signal plus one.

The default value for the �rst error signal is 10 (errors 0 to 9 are reserved for S/SL system use).

285

Appendix F. S/SL Language

F.5.5. S/SL: Type and Mechanism De�nitions

Type and mechanism de�nitions may be grouped and inter-mixed to re�ect the association of types

and the operation de�nitions which use them.

A typeOrMechanismDe�nition is one of:

� typeDe�nition

� mechanismDe�nition

F.5.6. S/SL: Types.

A typeDe�nition is:

TYPE id ":" {valueDefinition} ";"

A valueDe�nition is:

id ["=" value]

Each typeDe�nition de�nes a type of values for use as the parameter or result type of a semantic

operation or as the result type of a rule.

Each valueDe�nition de�nes a valueId in the type. An integer value is associated with each valueId

for use in the implementation of the S/SL program. This value may be optionally speci�ed in each

valueDe�nition. The value may be speci�ed as an integer or as the value of any previously de�ned

identi�er or string. The default value assigned to a value identi�er is the value associated with the

previous value identi�er plus one. The default value associated with the �rst valueDe�nition in a

type is zero.

F.5.7. S/SL: Mechanisms.

A mechanismDe�nition is:

MECHANISM id ":" {operationDefinition} ";"

Each mechanismDe�nition de�nes the set of semantic operations associated with a semantic

mechanism. The mechanismId itself is unused in the S/SL program. However, operation identi�ers

associated with a mechanism are by convention expected to begin with the mechanism identi�er.

An operationDe�nition is one of:

1. id

2. id "(" typeId")"

3. id ">>" typeId

4. id "(" typeId ")" ">>" typeId

286

Appendix F. S/SL Language

Each operationDe�nition de�nes a semantic operation associated with the mechanism.

� Form 1 de�nes an update semantic operation, which causes an update to the semantic data

structure.

� Form 2 de�nes a parameterized update operation, which uses the parameter value to update the

semantic data structure. The typeId gives the type of the parameter and can be any previously

de�ned type.

� Form 3 de�nes a choice semantic operation, which returns a result value obtained from the current

state of the semantic mechanism, which is used as the selector in a semantic choice. The typeId

gives the type of the result and can be any previously de�ned type.

� Form 4 de�nes a parameterized choice operation. The �rst typeId gives the parameter type, the

second the result type. Each can be any previously de�ned type.

Choice operations (forms 3 and 4 above) may be invoked only as the selector in a semantic choice.

F.5.8. S/SL: Rules

A rule is one of:

1.

id ":" {action} ";"

2.

id ">>" typeId ":" {action} ";"

The rules de�ne the subroutines and functions of the S/SL program. Rules may call one another

recursively. A rule need not be de�ned before it is used. Execution of the program begins with the

�rst rule.

� Form 1 de�nes a procedure rule which can be invoked using a call action.

� Form 2 de�nes a choice rule which returns a result value of the speci�ed type. The {\tt typeId} can

be any previously de�ned type. Choice rules may only be invoked as the selector in a rule choice.

F.5.9. S/SL: Actions

An action is one of the following:

1. inputToken

2. "." outputToken

3. "#" errorId

4. "{" {action} "}"

287

Appendix F. S/SL Language

5. ">"

6. "[" { "|" inputToken {"," inputToken} ":" {action} }

["|" "*" ":" {action}] "]"

7. "@" procedureRuleId

8. ">>"

9. "[" "@" choiceRuleId {"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

10. ">>" valueId

11. updateOpId

12. parameterizedUpdateOpId "(" valueId ")"

13. "[" choiceOpId {"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

14. "[" parameterizedChoiceOpId "(" valueId ")"

"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

� Form 1 is an input action. The next input token is to be accepted from the input stream. If it is not

the one speci�ed, a syntax error is �agged. The inputToken may be an inputTokenId, an

inputOutputTokenId, an inputTokenString, an inputOutputTokenString, or a question mark (�?�).

The question mark is a special token which matches any input token.

� Form 2 denotes emission of an output token to the output stream. The outputToken may be an

outputTokenId, an inputOutputTokenId, an outputTokenString or an inputOutputTokenString.

� Form 3 denotes the emission of the speci�ed error signal to the error stream.

� Form 4 is a cycle or loop. Execution of the actions inside the cycle is repeated until one of its

cycle exits (form 5) or a return (forms 8 and 10) is encountered. A cycle exit causes execution to

continue following the nearest enclosing cycle. The cycle exit action is not allowed outside of a

cycle.

� Form 6 is an input token choice. The next token in the input stream is examined and execution

continues with the �rst action in the alternative labelled with that input token. The matched input

token is accepted from the input stream.

Each inputToken label can be an inputTokenId, an inputOutputTokenId, an inputTokenString or an

inputOutputTokenString. A label can not be repeated nor appear on more than one alternative.

The alternative labelled with an {\tt *} is the otherwise alternative. If the next input token does not

match any of the alternative labels of the choice, execution continues with the �rst action in the

otherwise alternative. If the otherwise alternative is taken, the input token is not accepted from the

input stream, but remains as the next input token. After execution of the last action in an

alternative of the choice, execution continues following the choice.

If the next input token does not match any of the alternative labels and no otherwise alternative is

present, a syntax error is �agged. For parsers written in S/SL, the default error handling strategy is

to repeat the choice after modifying the input stream such that the next input token matches the

�rst alternative. For compiler phases other than parsers, continued execution is unde�ned (the

implementation aborts).

� Form 7 is a call to a procedure rule. Execution continues at the �rst action in the speci�ed rule.

When execution of the called rule is completed, either by executing the last action in the rule or by

encountering a return action (form 8), execution is resumed following the call.

288

Appendix F. S/SL Language

� Form 8 is a return action. It causes a return from the procedure rule in which it appears. A

procedure rule may return explicitly by executing a return action or implicitly by reaching the end

of the rule. A procedure rule must not contain a valued return (form 10).

� Form 9 is a rule choice. The speci�ed choice rule is called and returns a value by executing a

valued return action (form 10). The returned value is used to make a choice similar to an input

token choice (form 6 above).

Execution continues with the �rst action of the alternative whose label matches the returned value.

If none of the alternative labels matches the value, the otherwise alternative is taken. Following

execution of the last action in the chosen alternative, execution continues following the choice.

Each alternative label in a rule choice must be a value of the result type of the choice rule. A label

can not be repeated nor appear on more than one alternative.

� Form 10 is a valued return action. The speci�ed value is returned as the result of the choice rule in

which the action appears. The value must be of the result type of the choice rule. A choice rule

may return only by executing a valued return action. A choice rule must not return implicitly by

reaching the end of the rule. It must not contain a non-valued return (form 8).

� Form 11 is the invocation of an update semantic operation. Similarly, form 12 is the invocation of

a parameterized update operation. The parameter value, which must be of the operation's

parameter type, is supplied to the invocation of the operation.

� Form 13 is a semantic choice. The speci�ed choice semantic operation is invoked and the returned

value used to make a choice similar to an input token choice (form 6 above). Execution continues

with the �rst action of the alternative whose label matches the returned value. If none of the

alternative labels matches the value, the �otherwise� alternative is taken. Following execution of

the last action in the chosen alternative, execution continues following the choice. Similarly, form

14 is a parameterized semantic choice. The parameter value, which must be of the operation's

parameter type, is provided to the invocation of the choice operation.

Each alternative label in a semantic choice must be a value of the result type of the choice operation.

A label can not be repeated nor appear on more than one alternative.

If the returned value in a rule choice or semantic choice does not match any of the alternative labels

and no otherwise alternative is present, continued execution is unde�ned (the implementation

aborts).

F.6. The Syntax of S/SL

> A program is:

[inputDefinition] [outputDefinition]

[inputOutputDefinition]

[errorDefinition] {typeOrMechanismDefinition}

RULES {rule}

END

An inputDe�nition is:

INPUT ":" {tokenDefinition} ";"

289

Appendix F. S/SL Language

An outputDe�nition is:

OUTPUT ":" {tokenDefinition} ";"

An inputOutputDe�nition is:

INPUT OUTPUT ":" {tokenDefinition} ";"

A tokenDe�nition is:

id [string] ["=" tokenValue]

An errorDe�nition is:

ERROR ":" {errorSignalDefinition} ";"

An errorSignalDe�nition is:

id ["=" errorValue]

A typeOrMechanismDe�nition is one of:

1. typeDe�nition

2. mechanismDe�nition

A typeDe�nition is:

TYPE id ":" {valueDefinition} ";"

A valueDe�nition is:

id ["=" value]

A mechanismDe�nition is:

MECHANISM id ":" {operationDefinition} ";"

A rule is one of:

1. id ":" {action} ";"

2. id ">>" typeId ":" {action} ";"

An action is one of the following:

290

Appendix F. S/SL Language

1. inputToken

2. "." outputToken

3. "#" errorId

4. "{" {action} "}"

5. ">"

6. "[" {"|" inputToken {"," inputToken} ":" {action} }

["|" "*" ":" {action}] "]"

7. "@" procedureRuleId

8. ">>"

9. "[" "@" choiceRuleId {"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

10. ">>" valueId

11. updateOpId

12. parameterizedUpdateOpId "(" valueId ")"

13. "[" choiceOpId {"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

14. "[" parameterizedChoiceOpId "(" valueId ")"

{"|" valueId {"," valueId} ":" {action} }

["|" "*" ":" {action}] "]"

291

Appendix F. S/SL Language

292

Appendix G. RFC821

This will contain juicy bits regarding RFC 821, the SMTP protocol.

G.1. RFC821: "MAIL FROM:"

WRITEME! FIXME!

G.2. RFC821: "RCPT TO:"

WRITEME! FIXME!

G.3. RFC821: "DATA"

WRITEME! FIXME!

293

Appendix G. RFC821

294

Appendix H. RFC822

This will contain juicy bits regarding RFC 822, the message visible header speci�cation.

H.1. RFC822: "From:"

WRITEME! FIXME!

H.2. RFC822: "To:"

WRITEME! FIXME!

H.3. RFC822: "Cc:"

WRITEME! FIXME!

H.4. RFC822: "Subject:"

WRITEME! FIXME!

H.5. RFC822: "Date:"

WRITEME! FIXME!

H.6. RFC822: "Sender:"

WRITEME! FIXME!

295

Appendix H. RFC822

296

Index

B

build

/etc/group entries, 21

con�g, 21

forms �les, 23

$MAILVAR/mail.conf, 22

router con�guration; router.cf, 22

router-databases, 23

con�gure

options, 35

disk partitions, 15, 21

installation, 19

$MAILVAR/db/localnames, 26

man-page install, 19

router start verify, 23

security note: /etc/group entries, 21

upgrade preparation, 18

C

con�guration

basic ZMailer installation, 21

databases, 23

forms �les, 23

con�gure

options, 35

I

Install

scheduler.auth-�le, 30

sm.conf-�le, 30

installation

entire ZMailer, 19

man-pages, 19

preparations, 18

router start verify, 23

M

$MAILVAR/mail.conf-�le, 22

R

router.cf; router con�guration

con�g, 22

S

scheduler.auth-�le

Install time checking, 30

scheduler.conf, 29

SMTP input

content �ltering, admin, 70

content �ltering, reference, 117

relay policy, admin, 66

smtpserver

smtpserver.conf-�le, 28

smtpserver.conf

EHLO-style options, admin, 66

input content �lters, 70

input content �lters, reference, 117

install, 28

PARAM entries, admin, 63

relay policy �lters, 66

297

	ZMailer
	Table of Contents
	List of Figures
	I. Tutorial
	Chapter 1. Introduction to Email
	1.1. Messaging
	1.1.1. The Messaging Model
	1.1.2. Routing And Delivering Messages

	Chapter 2. ZMailer's Features, and Facilities
	2.1. Introduction
	2.1.1. Design Summary

	2.2. Running ZMailer
	2.3. Factors Affecting Overall System Performance

	II. Build and Install
	Chapter 3. Build and Install
	3.1. Environment Issues
	3.2. Autoconfiguration
	3.3. Compilation
	3.4. Installing and Upgrading
	3.4.1. Install Preparation
	3.4.2. Installation
	3.4.3. Installing the Manual Pages.

	Chapter 4. System Configuring
	4.1. Runtime files
	4.1.1. zmailer.conf
	4.1.2. /etc/group
	4.1.3. /etc/services

	4.2. The Router subsystem
	4.2.1. The Router Configuration File ($MAILSHARE/router.cf).
	4.2.2. $MAILVAR/mail.conf
	4.2.3. Verifying That the Router Starts
	4.2.4. The Router Database Files
	4.2.4.1. $MAILBIN/zmailer script
	4.2.4.2. $MAILVAR/db/dbases.conf file
	4.2.4.3. $MAILVAR/db/aliases file
	4.2.4.3.1. Alias expansion

	4.2.4.4. $MAILVAR/db/fqdnaliases file
	4.2.4.5. $MAILVAR/db/localnames file
	4.2.4.6. $MAILVAR/db/routes file
	4.2.4.7. UUCP Node Names

	4.2.5. Checking the Routing

	4.3. The Smtpserver subsystem
	4.3.1. The smtpserver.conf, and smtppolicy databases
	4.3.2. Testing smtpserver operationality

	4.4. The Scheduler subsystem
	4.4.1. Checking the Scheduler
	4.4.2. Checking scheduler.auth file
	4.4.3. Checking sm.conf file
	4.4.4. Customizing ZMailer Messages

	4.5. Bootup Scripts
	4.6. Checking the Log Files
	4.7. Crontab
	4.8. Trimdown of Logging

	Chapter 5. Installation to Clients
	5.1. Required Files
	The following files/programs are needed on clients:

	5.2. Mounting $MAILBOXes and/or $POSTOFFICE/ Hierarchies via NFS

	Chapter 6. ./configure options
	6.1. Used environment variables
	User environment variables

	6.2. Options for various facilities
	Options for various facilities

	6.3. Runtime ZENV Variables
	Runtime ZENV Variables

	Chapter 7. Verifying the System
	Chapter 8. Installing Whoson Service
	III. Administation
	Chapter 9. DNS and ZMailer
	Chapter 10. Security Issues
	Chapter 11. The Queue
	11.1. Message Submission Areas
	11.2. Router Behaviour on Queues
	11.3. Scheduler, and Transport Agents
	11.4. Postmaster Analysis Area

	Chapter 12. Smtpserver Administration
	12.1. smtpserver.conf
	12.1.1. smtpserver.conf; PARAM keywords
	12.1.2. smtpserver.conf; EHLOstyle options

	12.2. Policy Based Relaying Control
	12.3. Content Based Filtering

	Chapter 13. Router Administration
	13.1. Configuration File Programming Language
	13.2. Databases
	13.2.1. Using a Pathalias Database With %0 substitution
	13.2.2. Mailing Lists and /.forward
	13.2.2.1. aliases.cf Logic
	13.2.2.2. aliases
	13.2.2.3. Security Considerations

	Chapter 14. Scheduler Administration
	14.1. Principiles of scheduling: Threads
	14.2. Scheduler Resource Control
	14.3. The scheduler.conf file
	14.4. Scheduler's Mailq
	14.5. Scheduler's scheduler.auth control file
	14.6. manualexpirer
	14.7. Scheduler's Diagnostics Reporting
	14.7.1. Scheduler's Diagnostics Reporting, Forms Files

	Chapter 15. Transport Agent Administration
	15.1. Sm Transport Agent

	Chapter 16. Logging and Statistics for Administrator
	IV. Reference
	Chapter 17. Smtpserver Reference
	17.1. Smtpserver Runtime Parameters
	17.2. Smtpserver Configuration
	17.2.1. Smtpserver configuration; PARAM entries

	17.3. policybuilder.sh utility
	17.4. Relaying Control Policy Language
	17.4.1. Semantics

	17.5. Content Based Filtering

	Chapter 18. Sendmail Reference
	Chapter 19. Rmail Reference
	Chapter 20. zmailer(3) Reference
	Chapter 21. Router Reference
	21.1. ZMSH Script Language
	21.1.1. ZMSH Usage:
	21.1.2. ZMSH Parameters:
	21.1.3. ZMSH Debug options:

	21.2. Configuration Script Writing Rules
	21.3. Script Security Issues
	21.4. Router Script Well Known Entrypoints
	21.4.1. The process() function
	21.4.2. The router() function
	21.4.3. The crossbar() function
	21.4.4. The server() function

	21.5. Script Language Internal Functions
	21.5.1. ":" (doublecolon)
	21.5.2. ".", "include"
	21.5.3. "[", "test"
	21.5.4. attributes
	21.5.5. basename
	21.5.6. break
	21.5.7. builtin
	21.5.8. car
	21.5.9. cat
	21.5.10. cd
	21.5.11. cdr
	21.5.12. channel
	21.5.13. continue
	21.5.14. daemon
	21.5.15. db
	21.5.16. dblookup
	21.5.17. echo
	21.5.18. elements
	21.5.19. envars
	21.5.20. erraddron
	21.5.21. eval
	21.5.22. exit
	21.5.23. export
	21.5.24. filepriv
	21.5.25. first
	21.5.26. gensym
	21.5.27. get
	21.5.28. getopts
	21.5.29. grind
	21.5.30. groupmembers
	21.5.31. hash
	21.5.32. homedirectory
	21.5.33. host
	21.5.34. hostname
	21.5.35. ifssplit
	21.5.36. lappend
	21.5.37. last
	21.5.38. length
	21.5.39. list
	21.5.40. listaddresses
	21.5.41. listexpand
	21.5.42. login2uid
	21.5.43. lreplace
	21.5.44. malcontents
	21.5.45. printaliases
	21.5.46. process
	21.5.47. read
	21.5.48. recase
	21.5.49. recipient
	21.5.50. relation
	21.5.51. rest
	21.5.52. return
	21.5.53. returns
	21.5.54. rfc822
	21.5.55. rfc822date
	21.5.56. rfc822syntax
	21.5.57. runas
	21.5.58. sender
	21.5.59. set
	21.5.60. shift
	21.5.61. sleep
	21.5.62. squirrel
	21.5.63. stability
	21.5.64. "test", "["
	21.5.65. times
	21.5.66. trace
	21.5.67. trap
	21.5.68. type
	21.5.69. uid2login
	21.5.70. umask
	21.5.71. unset
	21.5.72. untrace
	21.5.73. user
	21.5.74. wait

	Chapter 22. Scheduler Reference
	22.1. Configuration Language
	22.1.1. PARAMentries
	22.1.2. GroupClause selection
	22.1.3. Clause components
	22.1.4. Variables and keywords

	22.2. Resource Management
	22.3. scheduler.auth file
	22.4. mailq protocol v.1
	22.5. mailq protocol v.2
	22.6. Transport Agent Interface Protocol
	22.7. Canned (Error) Message Files
	22.8. Security Issues

	Chapter 23. Transport Agents References
	23.1. mailbox
	23.2. hold
	23.3. smtp
	23.4. sm zmailer Sendmail compatible transport agent
	23.4.1. configuration of sm

	23.5. expirer
	23.6. libta Transport Agent Support Library
	23.6.1. Function groupings
	23.6.2. Function listings
	23.6.3. Function usage examples

	23.7. Security Issues

	Chapter 24. ZMailer Utilities Reference
	24.1. zmailer command script
	24.1.1. zmailer bootclean
	24.1.2. zmailer start
	24.1.3. zmailer stop, zmailer kill
	24.1.4. zmailer nuke
	24.1.5. zmailer router
	24.1.6. zmailer scheduler
	24.1.7. zmailer smtp(server)
	24.1.8. zmailer newdb
	24.1.9. zmailer newal(iases)
	24.1.10. zmailer newf(qdnaliases)
	24.1.11. zmailer newroute(s)
	24.1.12. zmailer newlocal(names)
	24.1.13. zmailer logsync
	24.1.14. zmailer logrotate
	24.1.15. zmailer resubmit
	24.1.16. zmailer cleanup
	24.1.17. zmailer freeze
	24.1.18. zmailer thaw, zmailer unfr(eeze)

	24.2. The newdbprocessor script
	24.3. The newdb script
	24.4. The makedb utility
	24.5. The dblook utility
	24.6. The policybuilder.sh script
	24.7. autoanswer
	24.8. vacation

	V. Appendices
	Appendix A. Sample Router Configuration Scripts
	A.1. SMTP+UUCP.cf
	A.2. Crossbar.cf
	A.3. Process.cf
	A.4. Rrouter.cf

	Appendix B. Scheduler's Configuration File Samples
	B.1. scheduler.conf
	B.2. scheduler.auth

	Appendix C. Using ZMailer with Mailinglist Managers
	Appendix D. Adding new transport agents
	Appendix E. Internal File Data Formats
	E.1. ZMailer's Files and Formats
	E.2. Envelope Header Lines
	E.3. Message Control File
	E.3.1. Format

	E.4. Database File Formats
	E.4.1. The dbases.conf file
	E.4.2. Aliases File
	E.4.3. FQDNAliases File
	E.4.4. Routes File
	E.4.5. Localnames
	E.4.6. Otherservers
	E.4.7. Iproutes
	E.4.8. Fullnames
	E.4.9. Userdb
	E.4.10. Expiredaccts
	E.4.11. Active (newsgroups)
	E.4.12. Aliases.ldap
	E.4.13. Fqdnaliases.ldap
	E.4.14. Mailbox File

	E.5. Scheduler Statistics Log
	E.6. Syslogged Log Formats
	E.6.1. Smtpserver's Syslog Format
	E.6.2. Router's Syslog Format
	E.6.3. Transport Agent's Syslog Format

	Appendix F. S/SL Language
	F.1. S/SL Introduction
	F.2. S/SL: Identifiers, Strings and Integers
	F.3. S/SL: Comments
	F.4. S/SL: Character Set
	F.5. S/SL: Source Program Format
	F.5.1. S/SL: Notation
	F.5.2. S/SL: Programs
	F.5.3. S/SL: Input and Output Definitions
	F.5.4. S/SL: Error Signals
	F.5.5. S/SL: Type and Mechanism Definitions
	F.5.6. S/SL: Types.
	F.5.7. S/SL: Mechanisms.
	F.5.8. S/SL: Rules
	F.5.9. S/SL: Actions

	F.6. The Syntax of S/SL

	Appendix G. RFC821
	G.1. RFC821: "MAIL FROM:"
	G.2. RFC821: "RCPT TO:"
	G.3. RFC821: "DATA"

	Appendix H. RFC822
	H.1. RFC822: "From:"
	H.2. RFC822: "To:"
	H.3. RFC822: "Cc:"
	H.4. RFC822: "Subject:"
	H.5. RFC822: "Date:"
	H.6. RFC822: "Sender:"

	Index
	B
	C
	I
	M
	R
	S

